6 research outputs found

    A Review of the Synthesis of Compositionally Complex Ultra-High-Temperature Ceramics

    Get PDF
    Ultra-high temperature ceramics (UHTC) are a class of ceramics that possess melting points greater than 3000 °C and can withstand temperatures higher than 2000 °C without structural failure. The need to increase the performance inherently leads to the implementation of extreme temperatures, leading to the search for a new class of materials with better thermal properties. Compositionally complex ultra-high temperature ceramics with the inclusion of additional elements, whether resulting in an equimolar or non-equimolar site occupation in the respective sublattices, can improve properties due to the contributions of the configurational entropy. The term compositional complexity can be used as an umbrella term for the class of compositions with 3 or more elements and also their non-equimolar parts. The current review paper is based on the classification of the different compositionally complex ultrahigh temperature ceramics as borides, carbides, nitrides, etc., and reviews the different procedures employed for the bulk or powder synthesis thereof

    Dwarf galaxies show little ISM evolution from z1z\sim1 to z0z\sim0: a spectroscopic study of metallicity, star formation, and electron density

    Full text link
    We present gas-phase metallicity measurements for 583 emission line galaxies at 0.3<z<0.850.3<z<0.85, including 388 dwarf galaxies with log(M/M)<9.5log(M_{\star}/M_{\odot}) < 9.5, and explore the dependence of the metallicity on the stellar mass and star formation properties of the galaxies. Metallicities are determined through the measurement of emission lines in very deep (\sim7 hr exposure) Keck/DEIMOS spectra taken primarily from the HALO7D survey. We measure metallicity with three strong-line calibrations (O3Hβ\beta, R23, and O3O2) for the overall sample, as well as with the faint [Ne III]λ\lambda3869 and [O III]λ\lambda4363 emission lines for 112 and 17 galaxies where robust detections were possible. We construct mass-metallicity relations (MZR) for each calibration method, finding MZRs consistent with other strong-line results at comparable redshift, as well as with z0z\sim0 galaxies. We quantify the intrinsic scatter in the MZR as a function of mass, finding it increases with lower stellar mass. We also measure a weak but significant correlation between increased MZR scatter and higher specific star formation rate. We find a weak influence of SFR in the fundamental metallicity relation as well, with an SFR coefficient of α=0.21\alpha=0.21. Finally, we use the flux ratios of the [O II]λλ\lambda\lambda3727,3729 doublet to calculate gas electron density in \sim1000 galaxies with log(M/M)<10.5log(M_{\star}/M_{\odot}) < 10.5 as a function of redshift. We measure low electron densities (ne25n_e\sim25 cm3^{-3}) for z<1z<1 galaxies, again consistent with z0z\approx0 conditions, but measure higher densities (ne100n_e\sim100 cm3^{-3}) at z>1z>1. These results all suggest that there is little evolution in star-forming interstellar medium conditions from z1z\sim1 to z=0z=0, confirmed with a more complete sample of low-mass galaxies than has previously been available in this redshift range.Comment: 22 pages, 10 figures, accepted to Ap

    The Dwarf Galaxy Population at z ∼ 0.7: A Catalog of Emission Lines and Redshifts from Deep Keck Observations

    Get PDF
    We present a catalog of spectroscopically measured redshifts over 0<z<20 < z < 2 and emission line fluxes for 1440 galaxies. The majority (\sim65\%) of the galaxies come from the HALO7D survey, with the remainder from the DEEPwinds program. This catalog includes redshifts for 646 dwarf galaxies with log(M/M)<9.5\log(M_{\star}/M_{\odot}) < 9.5. 810 catalog galaxies did not have previously published spectroscopic redshifts, including 454 dwarf galaxies. HALO7D used the DEIMOS spectrograph on the Keck II telescope to take very deep (up to 32 hours exposure, with a median of \sim7 hours) optical spectroscopy in the COSMOS, EGS, GOODS-North, and GOODS-South CANDELS fields, and in some areas outside CANDELS. We compare our redshift results to existing spectroscopic and photometric redshifts in these fields, finding only a 1\% rate of discrepancy with other spectroscopic redshifts. We measure a small increase in median photometric redshift error (from 1.0\% to 1.3\%) and catastrophic outlier rate (from 3.5\% to 8\%) with decreasing stellar mass. We obtained successful redshift fits for 75\% of massive galaxies, and demonstrate a similar 70-75\% successful redshift measurement rate in 8.5<log(M/M)<9.58.5 < \log(M_{\star}/M_{\odot}) < 9.5 galaxies, suggesting similar survey sensitivity in this low-mass range. We describe the redshift, mass, and color-magnitude distributions of the catalog galaxies, finding HALO7D galaxies representative of CANDELS galaxies up to \textit{i}-band magnitudes of 25. The catalogs presented will enable studies of star formation (SF), the mass-metallicity relation, SF-morphology relations, and other properties of the z0.7z\sim0.7 dwarf galaxy population.Comment: 23 pages, 19 Figures, updated to version accepted by ApJ

    Single-Source Precursor Synthesis of a Compositionally Complex Early Transitional Metal Carbonitride (Ti,Zr,Hf,Nb,Ta)NxC1−x

    No full text
    Compositionally complex transitional metal nitrides are possible candidates for ultra-high temperature usage and are known for their superior properties due to the high configuration entropy. It is often difficult to synthesize pure metal nitrides in bulk, due to significant oxygen contamination; hence, they are synthesized mainly as thin films through magnetron sputtering, chemical vapor deposition or surface nitridation of high entropy alloys. The present article reports on a single-phase compositionally complex ceramic, i.e., (Ti0.2Zr0.2Hf0.2Nb0.2Ta0.2)NxC1−x, that is synthesized for the first time by employing an organometallic precursor route and using a double ammonolysis process. A multidisciplinary approach is performed to study these compositionally complex nitride and carbonitride systems, including experimental and theoretical investigations

    Hard and tough novel high-pressure γ-Si 3N 4/Hf 3N 4 ceramic nanocomposites

    No full text
    Cubic silicon nitride (γ-Si3N4) is superhard and one of the hardest materials after diamond and cubic boron nitride (cBN), but has higher thermal stability in an oxidizing environment than diamond, making it a competitive candidate for technological applications in harsh conditions (e.g., drill head and abrasives). Here, we report the high-pressure synthesis and characterization of the structural and mechanical properties of a γ-Si3N4/Hf3N4 ceramic nanocomposite derived from single-phase amorphous silicon (Si)–hafnium (Hf)–nitrogen (N) precursor. The synthesis of the γ-Si3N4/Hf3N4 nanocomposite is performed at ~20 GPa and ca. 1500 ℃ in a large volume multi anvil press. The structural evolution of the amorphous precursor and its crystallization to γ-Si3N4/Hf3N4 nanocomposites under high pressures is assessed by the in situ synchrotron energy-dispersive X-ray diffraction (ED-XRD) measurements at ~19.5 GPa in the temperature range of ca. 1000–1900 ℃. The fracture toughness (KIC) of the two-phase nanocomposite amounts ~6/6.9 MPa·m1/2 and is about 2 times that of single-phase γ-Si3N4, while its hardness of ca. 30 GPa remains high. This work provides a reliable and feasible route for the synthesis of advanced hard and tough γ-Si3N4-based nanocomposites with excellent thermal stabililty
    corecore