81 research outputs found

    Review: development of clinically relevant scaffolds for vascularised bone tissue engineering

    No full text
    Clinical translation of scaffold-based bone tissue engineering (BTE) therapy still faces many challenges despite intense investigations and advancement over the years. To address these clinical barriers, it is important to analyse the current technical challenges in constructing a clinically relevant scaffold and subsequent clinical issues relating to bone repair. This review highlights the key challenges hampering widespread clinical translation of scaffold-based vascularised BTE, with a focus on the repair of large non-union defects. The main limitations of current scaffolds include the lack of sufficient vascularisation, insufficient mechanical strength as well as issues relating to the osseointegration of the bioresorbable scaffold and bone infection management. Critical insights on the current trends of scaffold technologies and future directions for advancing next-generation BTE scaffolds into the clinical realm are discussed. Considerations concerning regulatory approval and the route towards commercialisation of the scaffolds for widespread clinical utility will also be introduced

    Review: bioreactor design towards generation of relevant engineered tissues: focus on clinical translation

    No full text
    In tissue engineering and regenerative medicine, studies that utilize 3D scaffolds for generating voluminous tissues are mostly confined in the realm of in vitro research and preclinical animal model testing. Bioreactors offer an excellent platform to grow and develop 3D tissues by providing conditions that mimic their native microenvironment. Aligning the bioreactor development process with a focus on patient care will aid in the faster translation of the bioreactor technology to clinics. In this review, we discuss the various factors involved in the design of clinically relevant bioreactors in relation to their respective applications. We explore the functional relevance of tissue grafts generated by bioreactors that have been designed to provide physiologically relevant mechanical cues on the growing tissue. The review discusses the recent trends in non-invasive sensing of the bioreactor culture conditions. It provides an insight to the current technological advancements that enable in situ, non-invasive, qualitative and quantitative evaluation of the tissue grafts grown in a bioreactor system. We summarize the emerging trends in commercial bioreactor design followed by a short discussion on the aspects that hamper the ‘push’ of bioreactor systems into the commercial market as well as ‘pull’ factors for stakeholders to embrace and adopt widespread utility of bioreactors in the clinical setting.</p

    Transparent composite membrane

    No full text
    US6652966Granted Paten

    Studies on the incorporation of trans-Polyoctenylene in polystyrene and PVC blends

    No full text
    British Polymer Journal222161-165BPOJ

    High resolution, label-free photoacoustic imaging of live chicken embryo developing in bioengineered eggshell

    No full text
    Chicken embryos have been proven to be an attractive vertebrate model for biomedical research. They have helped in making significant contributions for advancements in various fields like developmental biology, cancer research and cardiovascular studies. However, a non-invasive, label-free method of imaging live chicken embryo at high resolution still needs to be developed and optimized. In this work, we have shown the potential of photoacoustic tomography (PAT) for imaging live chicken embryos cultured in bioengineered eggshells. Laser pulses at wavelengths of 532 and 740 nm were used for attaining cross-sectional images of chicken embryos at different developmental stages. Cross-sections along different depths were imaged to gain knowledge of the relative depth of different vessels and organs. Due to high optical absorption of vasculature and embryonic eye, images with good optical contrast could be acquired using this method. We have thus reported a label-free method of performing cross-sectional imaging of chicken embryos at high resolution demonstrating the capacity of PAT as a promising tool for avian embryo imaging.Ministry of Education (MOE)Ministry of Health (MOH)Accepted versionThe research was supported by a Tier 1 grant funded by the Ministry of Education in Singapore (RG144/18: M4012098) and by the Singapore Ministry of Health’s National Medical Research Council (NMRC/OFIRG/0005/2016: M4062012). SH Teoh greatly acknowledges the support of NTU start up grant M4081399. Authors have no relevant financial interest in the manuscript and no other potential conflict of interest to disclose
    corecore