5 research outputs found

    New use for succinylated sugarcane bagasse containing adsorbed Cu2+ and Ni2+ : efficient catalysts for gas-phase n-hexane and n-heptane oxidation reactions.

    Get PDF
    This study describes the use of succinylated twice-mercerized sugarcane bagasse containing adsorbed Cu2+ or Ni2+ ions from spiked aqueous solutions (2MSBA-Cu and 2MSBA-Ni) as heterogeneous catalysts for the catalytic oxidation of n-hexane and n-heptane in gas phase. To the best of our knowledge, this is the first study in which a spent adsorbent material based on lignocellulose biomass is used in the catalytic oxidation of volatile organic compounds. The adsorbent and spent adsorbent materials were characterized by FTIR, TGA and XRD. The amount of Cu2+ and Ni2+ adsorbed on 2MSBA was 0.49 and 2.49 mmol g?1, respectively. The catalysts were active for total oxidation of n-hexane and n-heptane, even at low temperatures. 2MSBA-Cu exhibited higher catalytic activity than 2MSBA-Ni and surprisingly their performances were comparable or superior to those of some catalysts reported in the literature, including noble metal-based catalysts

    Synthesis and application of a new carboxylated cellulose derivative. Part I : removal of Co2+, Cu2+ and Ni2+ from monocomponent spiked aqueous solution.

    Get PDF
    A new carboxylated cellulose derivative (CTA) was prepared from the esterification of cellulose with 1,2, 4-Benzenetricarboxylic anhydride. CTA was characterized by percent weight gain (pwg), amount of carboxylic acid groups (nCOOH), elemental analysis, FTIR, TGA, solid-state 13C NMR, X-ray diffraction (DRX), specific surface area, pore size distribution, SEM and EDX. The best CTA synthesis condition yielded a pwg and nCOOH of 94.5% and 6.81 mmol g 1, respectively. CTA was used as an adsorbent material to remove Co2+, Cu2+ and Ni2+ from monocomponent spiked aqueous solution. Adsorption studies were developed as a function of the solution pH, contact time and initial adsorbate concentration. Langmuir model better fitted the experimental adsorption data and the maximum adsorption capacities estimated by this model were 0.749, 1.487 and 1.001 mmol g 1 for Co2+, Cu2+ and Ni2+, respectively. The adsorption mechanism was investigated by using isothermal titration calorimetry. The values of DadsH were in the range from 5.36 to 8.09 kJ mol 1, suggesting that the mechanism controlling the phenomenon is physisorption. Desorption and re-adsorption studies were also performed. Desorption and re-adsorption efficiencies were closer to 100%, allowing the recovery of both metal ions and CTA adsorbent

    Synthesis and application of a new carboxylated cellulose derivative. Part II : removal of Co2+, Cu2+ and Ni2+ from bicomponent spiked aqueous solution.

    No full text
    In the second part of this series of studies, the competitive adsorption of three binary systems Cu2+?Co2+, Cu2+?Ni2+ and Co2+?Ni2+ on a carboxylated cellulose derivative (CTA) was evaluated in binary equimolar (1:1) metal?ion aqueous solutions. Bicomponent adsorption studies were developed as a function of contact time and initial metal ion concentration. Bicomponent adsorption kinetic data was modeled by monocomponent kinetic models of pseudo-first- (PFO) and pseudo-second-order (PSO) and a competitive kinetic model of Corsel. Bicomponent adsorption isotherm data was modeled by the ideal adsorbed solution theory (IAST) and real adsorbed solution theory (RAST) models. The monocomponent isotherm models implemented into the IAST were the Langmuir and Sips models, whereas for the RAST model only the Langmuir model was implemented because this model provided the best prediction of the bicomponent isotherm data. The surface of the CTA adsorbent after bicomponent adsorption of metal ions was also examined by SEM-EDX. The effect of one metal ion on the adsorption capacity of another metal ion was discussed in detail with basis on the kinetic and thermodynamics parameters. The selectivity and performance of the CTA adsorbent for the removal of Cu2+, Co2+ and Ni2+ was also evaluated and discussed

    Trimellitated sugarcane bagasse : a versatile adsorbent for removal of cationic dyes from aqueous solution. Part II: batch and continuous adsorption in a bicomponent system.

    No full text
    In the second part of this series of studies, the bicomponent adsorption of safranin-T (ST) and auramine-O (AO) on trimellitated sugarcane bagasse (STA) was evaluated using equimolar dye aqueous solutions at two pH values. Bicomponent batch adsorption was investigated as a function of contact time, solution pH and initial concentration of dyes. Bicomponent kinetic data were fitted by the pseudo-first-order and pseudo-second-order models and the competitive model of Corsel. Bicomponent equilibrium data were fitted by the real adsorbed solution theory model. The antagonistic interactions between ST and AO in the adsorption systems studied contributed to obtain values of maximum adsorption capacity in mono- (Qmax,mono) and bicomponent (Qmax,multi) lower than unity (Qmax,multi/Qmax,mono at pH 4.5 for ST of 0.75 and AO of 0.37 and at pH 7 for ST of 0.94 and AO of 0.43). Mono- and bicomponent adsorption of dyes in a fixed-bed column was evaluated at pH 4.5. The breakthrough curves were fitted by the Thomas and Bohart-Adams original models. Desorption of ST in a fixed-bed column was studied. The results obtained from the bicomponent batch and continuous adsorption showed that the presence of ST most affected the AO adsorption than the presence of AO affected the ST adsorption

    Trimellitated sugarcane bagasse : a versatile adsorbent for removal of cationic dyes from aqueous solution. Part I : batch adsorption in a monocomponent system.

    No full text
    Trimellitated-sugarcane bagasse (STA) was used as an environmentally friendly adsorbent for removal of the basic dyes auramine-O (AO) and safranin-T (ST) from aqueous solutions at pH 4.5 and 7.0. Dye adsorption was evaluated as a function of STA dosage, agitation speed, solution pH, contact time, and initial dye concentration. Pseudo-first- and pseudo-second-order, Elovich, intraparticle diffusion, and Boyd models were used to model adsorption kinetics. Langmuir, Dubinin-Radushkevich, Redlich-Peterson, Sips, Hill-de Boer, and Fowler-Guggenheim models were used to model adsorption isotherms, while a Scatchard plot was used to evaluate the existence of different adsorption sites. Maximum adsorption capacities for removal of AO and ST were 1.005 and 0.638 mmol g 1 at pH 4.5, and 1.734 and 1.230 mmol g 1 at pH 7.0, respectively. Adsorption enthalpy changes obtained by isothermal titration energy and entropy of adsorption were calculated. These thermodynamic parameters were also used to evaluate the adsorption mechanism at both pH values
    corecore