3 research outputs found

    Multiclass Level-Set Segmentation of Rust and Coating Damages in Images of Metal Structures

    No full text
    This paper describes the combined detection of coating and rust damages on painted metal structures through the multiclass image segmentation technique. Our prior works were focused solely on the localization of rust damages and rust segmentation under different ambient conditions (different lighting conditions, presence of shadows, low background/object color contrast). This paper method proposes three types of damages: coating crack, coating flaking, and rust damage. Background, paint flaking, and rust damage are objects that can be separated in RGB color-space alone. For their preliminary classification SVM is used. As for paint cracks, color features are insufficient for separating it from other defect types as they overlap with the other three classes in RGB color space. For preliminary paint crack segmentation we use the valley detection approach, which analyses the shape of defects. A multiclass level-set approach with a developed penalty term is used as a framework for the advanced final damage segmentation stage. Model training and accuracy assessment are fulfilled on the created dataset, which contains input images of corresponding defects with respective ground truth data provided by the expert. A quantitative analysis of the accuracy of the proposed approach is provided. The efficiency of the approach is demonstrated on authentic images of coated surfaces

    Evaluation of the Degree of Degradation of Brake Pad Friction Surfaces Using Image Processing

    No full text
    The improvement of drilling rig systems to ensure a reduction in unproductive time spent on lowering and lifting operations for replacing drilling tools and restoring the performance of drilling equipment units is an important task. At the same time, considerable attention is paid to the reliable and efficient operation of the braking systems of drilling rig winches. In the process of operation, the polymer pads periodically come into contact with the outer cylindrical surface of the metal pulley during braking, work in extreme conditions and wear out intensively, so they need periodic replacement. Tests were carried out on a modernized stand and in industrial conditions for the brakes of drilling winches. A methodology for evaluating the degradation of the brake pad friction surface during its operation is proposed. The assessment of the degradation degree is carried out based on the image of the brake pad surface using image processing techniques. Geometric transformations of the input image were performed to avoid perspective distortions caused by the concave shape of the brake pads and the spatial angle at which the image is acquired to avoid glares. The crack detection step was implemented based on the scale-space theory, followed by contour detection and skeletonization. The ratios of the area and perimeter of segmented and skeletonized cracks to the total area were chosen as integral characteristics of the degradation degree. With the help of scanning electron microscopy, the character of the destruction of the friction surface and the degradation of the polymer material was investigated. Experimental studies were performed, and the application of the proposed method is illustrated

    Estimation of Fatigue Crack Growth Rate in Heat-Resistant Steel by Processing of Digital Images of Fracture Surfaces

    No full text
    The micro- and macroscopic fatigue crack growth (FCG) rates of a wide class of structural materials were analyzed and it was concluded that both rates coincide either during high-temperature tests or at high stress intensity factor (SIF) values. Their coincidence requires a high level of cyclic deformation of the metal along the entire crack front as a necessary condition for the formation of fatigue striations (FS). Based on the analysis of digital fractographic images of the fatigue fracture surfaces, a method for the quantitative assessment of the spacing of FS has been developed. The method includes the detection of FS by binarization of the image based on the principle of local minima, rotation of the highlighted fragments of the image using the Hough transform, and the calculation of the distances between continuous lines. The method was tested on 34KhN3M steel in the initial state and after long-term operation (~3 × 105 h) in the rotor disk of a steam turbine at a thermal power plant (TPP). Good agreement was confirmed between FCG rates (both macro and microscopic, determined manually or using digital imaging techniques) at high SIF ranges and their noticeable discrepancy at low SIF ranges. Possible reasons for the discrepancy between the micro- and macroscopic FCG rates at low values of the SIF are analyzed. It has also been noted that FS is easier to detect on the fracture surface of degraded steel. Hydrogen embrittlement of steel during operation promotes secondary cracking along the FS, making them easier to detect and quantify. It is shown that the invariable value of the microscopic FCG rate at a low SIF range in the operated steel is lower than observable for the steel in the initial state. Secondary cracking of the operated steel may have contributed to the formation of a typical FS pattern along the entire crack front at a lower FCG rate than in unoperated steel
    corecore