4,715 research outputs found

    Electromagnetic Casimir piston in higher dimensional spacetimes

    Full text link
    We consider the Casimir effect of the electromagnetic field in a higher dimensional spacetime of the form M×NM\times \mathcal{N}, where MM is the 4-dimensional Minkowski spacetime and N\mathcal{N} is an nn-dimensional compact manifold. The Casimir force acting on a planar piston that can move freely inside a closed cylinder with the same cross section is investigated. Different combinations of perfectly conducting boundary conditions and infinitely permeable boundary conditions are imposed on the cylinder and the piston. It is verified that if the piston and the cylinder have the same boundary conditions, the piston is always going to be pulled towards the closer end of the cylinder. However, if the piston and the cylinder have different boundary conditions, the piston is always going to be pushed to the middle of the cylinder. By taking the limit where one end of the cylinder tends to infinity, one obtains the Casimir force acting between two parallel plates inside an infinitely long cylinder. The asymptotic behavior of this Casimir force in the high temperature regime and the low temperature regime are investigated for the case where the cross section of the cylinder in MM is large. It is found that if the separation between the plates is much smaller than the size of N\mathcal{N}, the leading term of the Casimir force is the same as the Casimir force on a pair of large parallel plates in the (4+n)(4+n)-dimensional Minkowski spacetime. However, if the size of N\mathcal{N} is much smaller than the separation between the plates, the leading term of the Casimir force is 1+h/21+h/2 times the Casimir force on a pair of large parallel plates in the 4-dimensional Minkowski spacetime, where hh is the first Betti number of N\mathcal{N}. In the limit the manifold N\mathcal{N} vanishes, one does not obtain the Casimir force in the 4-dimensional Minkowski spacetime if hh is nonzero.Comment: 22 pages, 4 figure

    Finite Temperature Casimir Effect in Randall-Sundrum Models

    Full text link
    The finite temperature Casimir effect for a scalar field in the bulk region of the two Randall-Sundrum models, RSI and RSII, is studied. We calculate the Casimir energy and the Casimir force for two parallel plates with separation aa on the visible brane in the RSI model. High-temperature and low-temperature cases are covered. Attractiveness versus repulsiveness of the temperature correction to the force is discussed in the typical special cases of Dirichlet-Dirichlet, Neumann-Neumann, and Dirichlet-Neumann boundary conditions at low temperature. The Abel-Plana summation formula is made use of, as this turns out to be most convenient. Some comments are made on the related contemporary literature.Comment: 33 pages latex, 2 figures. Some changes in the discussion. To appear in New J. Phy

    STRENGTH AND CONDITIONING PROGRAMMES FOR IMPROVING BACK MUSCLE FATIGABILITY IN FIREFIGHTERS

    Get PDF
    Back pain and back-related injuries are common in firefighters. The purpose of this study was to compare the effectiveness of two different types of strength and conditioning programmes in improving back muscle fatigability in firefighters. A total of 12 male firefighters completed 16 weeks on supervised exercise intervention programme. The Functional Group was prescribed unilateral movements that mimicked the asymmetrical nature of firefighting tasks. The Conventional Group performed more bilaterally loaded, symmetrical exercise training. The lumbar extensor muscles’ resistance to fatigue was assessed using the Modified Sorensen test with electromyography (EMG). The EMG median frequency slope was less steep (p = 0.023, η²p =0.420) after training, indicating improvement in fatigability. There was no difference between the groups (p = .605, η²p = 0.028) and no interaction effect (p = 0.245, η²p =0.132). In conclusion, a well-rounded strength and conditioning programme is promising in improving back muscle fatigability in firefighters

    Local Structure of La1-xSrxCoO3 determined from EXAFS and neutron PDF studies

    Get PDF
    The combined local structure techniques, extended x-ray absorption fine structure (EXAFS) and neutron pair distribution function analysis, have been used for temperatures 4 <= T <= 330 K to rule out a large Jahn-Teller (JT) distortion of the Co-O bond in La1-xSrxCoO3 for a significant fraction of Co sites (x <= 0.35), indicating few, if any, JT-active, singly occupied e_g Co sites exist.Comment: 5 page

    Viral quasispecies inference from 454 pyrosequencing

    Get PDF
    10.1186/1471-2105-14-355BMC Bioinformatics141-BBMI

    Multi-black hole solutions in five dimensions

    Full text link
    Using a recently developed generalized Weyl formalism, we construct an asymptotically flat, static vacuum Einstein solution that describes a superposition of multiple five-dimensional Schwarzschild black holes. The spacetime exhibits a U(1)\times U(1) rotational symmetry. It is argued that for certain choices of parameters, the black holes are collinear and so may be regarded as a five-dimensional generalization of the Israel-Khan solution. The black holes are kept in equilibrium by membrane-like conical singularities along the two rotational axes; however, they still distort one another by their mutual gravitational attraction. We also generalize this solution to one describing multiple charged black holes, with fixed mass-to-charge ratio, in Einstein-Maxwell-dilaton theory.Comment: 23 pages, 6 figure

    A Storage Ring for Neutral Atoms

    Get PDF
    We have demonstrated a storage ring for ultra-cold neutral atoms. Atoms with mean velocities of 1 m/s corresponding to kinetic energies of ~100 neV are confined to a 2 cm diameter ring by magnetic forces produced by two current-carrying wires. Up to 10^6 atoms are loaded at a time in the ring, and 7 revolutions are clearly observed. Additionally, we have demonstrated multiple loading of the ring and deterministic manipulation of the longitudinal velocity distribution of the atoms using applied laser pulses. Applications of this ring include large area atom interferometers and cw monochromatic atomic beam generation.Comment: 4 pages, 5 figure
    corecore