16 research outputs found

    Quantitative measurement of the PCCC area in the postoperative period

    No full text
    BACKGROUND/AIMS—The major complication of extracapsular cataract extraction (ECCE) is posterior capsule opacification (PCO). Posterior continuous circular capsulorhexis (PCCC) seems to be very promising in preventing PCO. This study was aimed at determining if the PCCC area changes as a function of time and if pearl formation could influence it.
METHODS—24 eyes of 23 patients underwent ECCE with PCCC. Retroillumination photographs were taken at 6 months and then yearly. To measure the PCCC area, the computerised program EPCO (evaluation of posterior capsule opacification) was used. The ratio of the PCCC area in relation to the IOL surface was calculated for the different time stages and the presence of pearl formation was noted. Firstly, proportional changes in diameter were compared in PCCC areas measured after 6 months and after 1 year (group I, n=13) and after 1 year and 2 years (group II, n=14). Secondly, PCCC areas were compared between two time stages in patients with (group III, n=19) and without pearl formation (group IV, n=8).
RESULTS—No statistically significant difference was found in diameter change in either group. The PCCC area remains stabile between 6 months to 1 year and 1 year to 2 years. No differences are found between eyes with or without pearl formation.
CONCLUSIONS—The PCCC area remains stable as a function of time and is not influenced by pearl formation.


    Western Star, 1918-10-23

    No full text
    The Western Star began publication on Newfoundland's west coast on 4 April 1900, appearing weekly with brief semiweekly periods up to 1952, when it became a daily. As of 17 April 2019 it continues as a free weekly community paper

    The 5-phosphatase OCRL in Lowe syndrome and Dent disease 2

    No full text
    Lowe syndrome is an X-linked disease that is characterized by congenital cataracts, central hypotonia, intellectual disability and renal Fanconi syndrome. The disease is caused by mutations in OCRL, which encodes an inositol polyphosphate 5-phosphatase (OCRL) that acts on phosphoinositides - quantitatively minor constituents of cell membranes that are nonetheless pivotal regulators of intracellular trafficking. In this Review we summarize the considerable progress made over the past decade in understanding the cellular roles of OCRL in regulating phosphoinositide balance along the endolysosomal pathway, a fundamental system for the reabsorption of proteins and solutes by proximal tubular cells. We discuss how studies of OCRL have led to important discoveries about the basic mechanisms of membrane trafficking and describe the key features and limitations of the currently available animal models of Lowe syndrome. Mutations in OCRL can also give rise to a milder pathology, Dent disease 2, which is characterized by renal Fanconi syndrome in the absence of extrarenal pathologies. Understanding how mutations in OCRL give rise to two clinical entities with differing extrarenal manifestations represents an opportunity to identify molecular pathways that could be targeted to develop treatments for these conditions
    corecore