798 research outputs found
Observations of the diffuse UV radiation field
Spectra are presented for the diffuse UV radiation field between 1250 to 3100 A from eight different regions of the sky, which were obtained with the Johns Hopkins UVX experiment. UVX flew aboard the Space Shuttle Columbia (STS-61C) in January 1986 as part of the Get-Away Special project. The experiment consisted of two 1/4 m Ebert-Fastie spectrometers, covering the spectral range 1250 to 1700 A at 17 A resolution and 1600 to 3100 A at 27 A resolution, respectively, with a field of view of 4 x .25 deg, sufficiently small to pick out regions of the sky with no stars in the line of sight. Values were found for the diffuse cosmic background ranging in intensity from 300 to 900 photons/sq cm/sec/sr/A. The cosmic background is spectrally flat from 1250 to 3100 A, within the uncertainties of each spectrometer. The zodiacal light begins to play a significant role in the diffuse radiation field above 2000 A, and its brightness was determined relative to the solar emission. Observed brightnesses of the zodiacal light in the UV remain almost constant with ecliptic latitude, unlike the declining visible brightnesses, possibly indicating that those (smaller) grains responsible for the UV scattering have a much more uniform distribution with distance from the ecliptic plane than do those grains responsible for the visible scattering
R-matrix calculation of electron collisions with electronically excited O2 molecules
Low-energy electron collisions with O molecules are studied using the
fixed-bond R-matrix method. In addition to the O ground
state, integrated cross sections are calculated for elecron collisions with the
and excited states of O molecules. 13
target electronic states of O are included in the model within a valence
configuration interaction representations of the target states. Elastic cross
sections for the and excited states are
similar to the cross sections for the ground state. As in
case of excitation from the state, the O
resonance makes the dominant contribution to excitation cross sections from the
and states. The magnitude of excitation
cross sections from the state to the
state is about 10 time larger than the corresponding cross sections from the
to the state. For this
transition, our cross section at
4.5 eV agrees well with the available experimental value. These results should
be important for models of plasma discharge chemistry which often requires
cross sections between the excited electronic states of O.Comment: 26 pages, 10 figure
Low and intermediate energy electron collisions with the C molecular anion
Calculations are presented which use the molecular R-matrix with
pseudo-states (MRMPS) method to treat electron impact electron detachment and
electronic excitation of the carbon dimer anion. Resonances are found above the
ionisation threshold of C with , and
symmetry. These are shape resonances trapped by the effect of an attractive
polarisation potential competing with a repulsive Coulomb interaction. The
resonances are found to give structure in the detachment cross section
similar to that observed experimentally. Both excitation and detachment cross
sections are found to be dominated by large impact parameter collisions whose
contribution is modelled using the Born approximation.Comment: 18 pages, 5 figures constructed from 8 file
Soft-tissue specimens from pre-European extinct birds of New Zealand
We provide the first complete review of soft tissue remains from New Zealand birds that became extinct prior to European settlement (c. AD 1800). These rare specimens allow insights into the anatomy and appearance of the birds that are not attainable from bones. Our review includes previously unpublished records of ‘lost’ specimens, and descriptions of recently discovered specimens such as the first evidence of soft tissues from the South Island goose (Cnemiornis calcitrans). Overall, the soft tissue remains are dominated by moa (with specimens from each of the six genera), but also include specimens from Finsch's duck (Chenonetta finschi) and the New Zealand owlet-nightjar (Aegotheles novaezealandiae). All desiccated soft tissue specimens that have radiocarbon or stratigraphic dates are late Holocene in age, and most have been found in the semi-arid region of Central Otago
Blind extraction of an exoplanetary spectrum through Independent Component Analysis
Blind-source separation techniques are used to extract the transmission
spectrum of the hot-Jupiter HD189733b recorded by the Hubble/NICMOS instrument.
Such a 'blind' analysis of the data is based on the concept of independent
component analysis. The de-trending of Hubble/NICMOS data using the sole
assumption that nongaussian systematic noise is statistically independent from
the desired light-curve signals is presented. By not assuming any prior, nor
auxiliary information but the data themselves, it is shown that spectroscopic
errors only about 10 - 30% larger than parametric methods can be obtained for
11 spectral bins with bin sizes of ~0.09 microns. This represents a reasonable
trade-off between a higher degree of objectivity for the non-parametric methods
and smaller standard errors for the parametric de-trending. Results are
discussed in the light of previous analyses published in the literature. The
fact that three very different analysis techniques yield comparable spectra is
a strong indication of the stability of these results.Comment: ApJ accepte
Low temperature scattering with the R-matrix method: the Morse potential
Experiments are starting to probe collisions and chemical reactions between
atoms and molecules at ultra-low temperatures. We have developed a new
theoretical procedure for studying these collisions using the R-matrix method.
Here this method is tested for the atom -- atom collisions described by a Morse
potential. Analytic solutions for continuum states of the Morse potential are
derived and compared with numerical results computed using an R-matrix method
where the inner region wavefunctions are obtained using a standard nuclear
motion algorithm. Results are given for eigenphases and scattering lengths.
Excellent agreement is obtained in all cases. Progress in developing a general
procedure for treating ultra-low energy reactive and non-reactive collisions is
discussed.Comment: 18 pages, 6 figures, 3 tables, conferenc
A bittern (Aves: Ardeidae) from the Early Miocene of New Zealand
Author version made available in accordance with Publisher copyright policy
Algebraic-matrix calculation of vibrational levels of triatomic molecules
We introduce an accurate and efficient algebraic technique for the
computation of the vibrational spectra of triatomic molecules, of both linear
and bent equilibrium geometry. The full three-dimensional potential energy
surface (PES), which can be based on entirely {\it ab initio} data, is
parameterized as a product Morse-cosine expansion, expressed in bond-angle
internal coordinates, and includes explicit interactions among the local modes.
We describe the stretching degrees of freedom in the framework of a Morse-type
expansion on a suitable algebraic basis, which provides exact analytical
expressions for the elements of a sparse Hamiltonian matrix. Likewise, we use a
cosine power expansion on a spherical harmonics basis for the bending degree of
freedom. The resulting matrix representation in the product space is very
sparse and vibrational levels and eigenfunctions can be obtained by efficient
diagonalization techniques. We apply this method to carbonyl sulfide OCS,
hydrogen cyanide HCN, water HO, and nitrogen dioxide NO. When we base
our calculations on high-quality PESs tuned to the experimental data, the
computed spectra are in very good agreement with the observed band origins.Comment: 11 pages, 2 figures, containg additional supporting information in
epaps.ps (results in tables, which are useful but not too important for the
paper
Calibration of a two-phase xenon time projection chamber with a Ar source
We calibrate a two-phase xenon detector at 0.27 keV in the charge channel and
at 2.8 keV in both the light and charge channels using a Ar source that
is directly released into the detector. We map the light and charge yields as a
function of electric drift field. For the 2.8 keV peak, we calculate the
Thomas-Imel box parameter for recombination and determine its dependence on
drift field. For the same peak, we achieve an energy resolution,
, between 9.8% and 10.8% for 0.1 kV/cm to 2 kV/cm electric
drift fields.Comment: 12 pages, 7 figure
Near-Infrared water lines in V838 Monocerotis
V838 Monocerotis had an intriguing, nova-like outburst in January 2002 which
has subsequently led to several studies of the object. It is now recognized
that the outburst of V838 Mon and its evolution are different from that of a
classical nova or other classes of well-known eruptive variables. V838 Mon,
along with two other objects that have analogous properties, appears to
comprise a new class of eruptive variables. There are limited infrared studies
of V838 Mon. Here, we present near-infrared H band (1.5 - 1.75micron) spectra
of V838 Mon from late 2002 to the end of 2004. The principal, new result from
our work is the detection of several, rotation-vibration lines of water in the
H band spectra. The observed water lines have been modeled to first establish
that they are indeed due to water. Subsequently the temperature and column
densities of the absorbing material, from where the water absorption features
originate, are derived. From our analysis, we find that the water features
arise from a cool ~750-900 K region around V838 Mon which appears to be
gradually cooling with time.Comment: 11 pages, 2 figures. Accepted in Ap.J Letter
- …