43 research outputs found
Sociodemographic and geographic characteristics associated with patient visits to osteopathic physicians for primary care
<p>Abstract</p> <p>Background</p> <p>Health care reform promises to dramatically increase the number of Americans covered by health insurance. Osteopathic physicians (DOs) are recognized for primary care, including a "hands-on" style with an emphasis on patient-centered care. Thus, DOs may be well positioned to deliver primary care in this emerging health care environment.</p> <p>Methods</p> <p>We used data from the National Ambulatory Medical Care Survey (2002-2006) to study sociodemographic and geographic characteristics associated with patient visits to DOs for primary care. Descriptive analyses were initially performed to derive national population estimates (NPEs) for overall patient visits, primary care patient visits, and patient visits according to specialty status. Osteopathic and allopathic physician (MD) patient visits were compared using cross-tabulations and multiple logistic regression to compute odds ratios (ORs) and 95% confidence intervals (CIs) for DO patient visits. The latter analyses were also conducted separately for each geographic characteristic to assess the potential for effect modification based on these factors.</p> <p>Results</p> <p>Overall, 134,369 ambulatory medical care visits were surveyed, representing 4.6 billion (NPE) ± 220 million (SE) patient visits when patient visit weights were applied. Osteopathic physicians provided 336 million ± 30 million (7%) of these patient visits. Osteopathic physicians provided 217 million ± 21 million (10%) patient visits for primary care services; including 180 million ± 17 million (12%) primary care visits for adults (21 years of age or older) and 37 million ± 5 million (5%) primary care visits for minors. Osteopathic physicians were more likely than MDs to provide primary care visits in family and general medicine (OR, 6.03; 95% CI, 4.67-7.78), but were less likely to provide visits in internal medicine (OR, 0.37; 95% CI, 0.24-0.58) or pediatrics (OR, 0.21; 95% CI, 0.11-0.40). Overall, patients in the pediatric and geriatric ages, Blacks, Hispanics, and persons in the South and West were less likely to utilize DOs, although there was some evidence of effect modification according to United States Census region.</p> <p>Conclusions</p> <p>Health care reform provides unprecedented opportunities for DOs to reach historically underserved populations and to overcome the "pediatric primary-care paradox."</p
A Genome-Wide RNAi Screen for Factors Involved in Neuronal Specification in Caenorhabditis elegans
One of the central goals of developmental neurobiology is to describe and understand the multi-tiered molecular events that control the progression of a fertilized egg to a terminally differentiated neuron. In the nematode Caenorhabditis elegans, the progression from egg to terminally differentiated neuron has been visually traced by lineage analysis. For example, the two gustatory neurons ASEL and ASER, a bilaterally symmetric neuron pair that is functionally lateralized, are generated from a fertilized egg through an invariant sequence of 11 cellular cleavages that occur stereotypically along specific cleavage planes. Molecular events that occur along this developmental pathway are only superficially understood. We take here an unbiased, genome-wide approach to identify genes that may act at any stage to ensure the correct differentiation of ASEL. Screening a genome-wide RNAi library that knocks-down 18,179 genes (94% of the genome), we identified 245 genes that affect the development of the ASEL neuron, such that the neuron is either not generated, its fate is converted to that of another cell, or cells from other lineage branches now adopt ASEL fate. We analyze in detail two factors that we identify from this screen: (1) the proneural gene hlh-14, which we find to be bilaterally expressed in the ASEL/R lineages despite their asymmetric lineage origins and which we find is required to generate neurons from several lineage branches including the ASE neurons, and (2) the COMPASS histone methyltransferase complex, which we find to be a critical embryonic inducer of ASEL/R asymmetry, acting upstream of the previously identified miRNA lsy-6. Our study represents the first comprehensive, genome-wide analysis of a single neuronal cell fate decision. The results of this analysis provide a starting point for future studies that will eventually lead to a more complete understanding of how individual neuronal cell types are generated from a single-cell embryo