785 research outputs found

    Investigations of the effect of nonmagnetic Ca substitution for magnetic Dy on spin-freezing in Dy2Ti2O7

    Get PDF
    Physical properties of partially Ca substituted hole-doped Dy2Ti2O7 have been investigated by ac magnetic susceptibility \chi_ac(T), dc magnetic susceptibility \chi(T), isothermal magnetization M(H) and heat capacity C_p(T) measurements on Dy1.8Ca0.2Ti2O7. The spin-ice system Dy2Ti2O7 exhibits a spin-glass type freezing behavior near 16 K. Our frequency dependent \chi_ac(T) data of Dy1.8Ca0.2Ti2O7 show that the spin-freezing behavior is significantly influenced by Ca substitution. The effect of partial nonmagnetic Ca2+ substitution for magnetic Dy3+ is similar to the previous study on nonmagnetic isovalent Y3+ substituted Dy2-xYxTi2O7 (for low levels of dilution), however the suppression of spin-freezing behavior is substantially stronger for Ca than Y. The Cole-Cole plot analysis reveals semicircular character and a single relaxation mode in Dy1.8Ca0.2Ti2O7 as for Dy2Ti2O7. No noticeable change in the insulating behavior of Dy2Ti2O7 results from the holes produced by 10% Ca2+ substitution for Dy3+ ions.Comment: 9 pages, 7 figures, 1 tabl

    Chandra discovery of luminous supersoft X-ray sources in M81

    Get PDF
    A Chandra ACIS-S imaging observation of the nearby galaxy M81 (NGC 3031) reveals nine luminous soft X-ray sources. The local environments, X-ray spectral properties, and X-ray light curves of the sources are presented and discussed in the context of prevailing physical models for supersoft sources. It is shown that the sample falls within expectations based on population synthesis models taken from the literature, although the high observed luminosities (Lobs ∼ 2 × 1036-3 × 10 38 ergs s-1 in the 0.2-2.0 keV band) and equivalent blackbody temperatures (Teff ∼ 40-80 eV) place the brightest detected M81 objects at the high-luminosity end of the class of supersoft sources defined by previous ROSAT and Einstein studies of nearby galaxies. This is interpreted as a natural consequence of the higher sensitivity of Chandra to hotter and more luminous systems. Most of the sources can be explained as canonical supersoft sources: accreting white dwarfs powered by steady surface nuclear burning with X-ray spectra well fitted by hot white dwarf local thermodynamic equilibrium atmosphere models. An exceptionally bright source is scrutinized in greater detail since its estimated bolometric luminosity, L bol ∼ 1.5 × 1039 ergs s-1, greatly exceeds theoretical estimates for supersoft sources. This source may be beyond the stability limit and undergoing a phase of mass outflow under extreme conditions. Alternatively, a model in which the observed X-ray spectrum arises from an accretion disk around a black hole of mass ∼1200/(cos i) 1/2 M⊙ (viewed at an inclination angle i) cannot be excluded

    Spectrum of elementary and collective excitations in the dimerized S=1/2 Heisenberg chain with frustration

    Full text link
    We have studied the low-energy excitation spectrum of a dimerized and frustrated antiferromagnetic Heisenberg chain. We use an analytic approach, based on a description of the excitations as triplets above a strong-coupling singlet ground state. The quasiparticle spectrum is calculated by treating the excitations as a dilute Bose gas with infinite on-site repulsion. Additional singlet (S=0) and triplet (S=1) modes are found as two-particle bound states of the elementary triplets. We have also calculated the contributions of the elementary and collective excitations into the spin structure factor. Our results are in excellent agreement with exact diagonalizations and dimer series expansions data as long as the dimerization parameter δ\delta is not too small (δ>0.1\delta>0.1), i.e. while the elementary triplets can be treated as localized objects.Comment: 18 pages, 13 figure

    Direct Observation of Field-Induced Incommensurate Fluctuations in a One-Dimensional S=1/2 Antiferromagnet

    Full text link
    Neutron scattering from copper benzoate, Cu(C6D5COO)2 3D2O, provides the first direct experimental evidence for field-dependent incommensurate low energy modes in a one-dimensional spin S = 1/2 antiferromagnet. Soft modes occur for wavevectors q=\pi +- dq(H) where dq(H) ~ 2 \pi M(H)/g\mu_B as predicted by Bethe ansatz and spinon descriptions of the S = 1/2 chain. Unexpected was a field-induced energy gap Δ(H)Hα\Delta(H) \propto H^\alpha, where α=0.65(3)\alpha = 0.65(3) as determined from specific heat measurements. At H = 7 T (g\mu_B H/J = 0.52), the magnitude of the gap varies from 0.06 - 0.3 J depending on the orientation of the applied field.Comment: 11 pages, 5 postscript figures, LaTeX, Submitted to PRL 3/31/97, e-mail comments to [email protected]

    Line shapes of dynamical correlation functions in Heisenberg chains

    Full text link
    We calculate line shapes of correlation functions by use of complete diagonalization data of finite chains and analytical implications from conformal field theory, density of states, and Bethe ansatz. The numerical data have different finite size accuracy in case of the imaginary and real parts in the frequency and time representations of spin-correlation functions, respectively. The low temperature, conformally invariant regime crosses over at T0.7JT^*\approx 0.7J to a diffusive regime that in turn connects continuously to the high temperature, interacting fermion regime. The first moment sum rule is determined.Comment: 13 pages REVTEX, 18 figure

    John Schuster, Descartes-agonistes: Physico-mathematics, method and corpuscular-mechanism, 1618–1633

    Get PDF
    We report on a 10 ks simultaneous Chandra/HETG-NuSTAR observation of the Bursting Pulsar, GRO J1744-28, during its third detected outburst since discovery and after nearly 18 years of quiescence. The source is detected up to 60 keV with an Eddington persistent flux level. Seven bursts, followed by dips, are seen with Chandra, three of which are also detected with NuSTAR. Timing analysis reveals a slight increase in the persistent emission pulsed fraction with energy (from 10% to 15%) up to 10 keV, above which it remains constant. The 0.5-70 keV spectra of the persistent and dip emission are the same within errors, and well described by a blackbody (BB), a power-law with an exponential rolloff, a 10 keV feature, and a 6.7 keV emission feature, all modified by neutral absorption. Assuming that the BB emission originates in an accretion disc, we estimate its inner (magnetospheric) radius to be about 4x10^7 cm, which translates to a surface dipole field B~9x10^10 G. The Chandra/HETG spectrum resolves the 6.7 keV feature into (quasi-)neutral and highly ionized Fe XXV and Fe XXVI emission lines. XSTAR modeling shows these lines to also emanate from a truncated accretion disk. The burst spectra, with a peak flux more than an order of magnitude higher than Eddington, are well fit with a power-law with an exponential rolloff and a 10~keV feature, with similar fit values compared to the persistent and dip spectra. The burst spectra lack a thermal component and any Fe features. Anisotropic (beamed) burst emission would explain both the lack of the BB and any Fe components.Comment: 15 pages, 11 figures, Accepted in Ap

    Quasi-1D spin-1/2 Heisenberg magnets in their ordered phase: correlation functions

    Full text link
    We study weakly coupled antiferromagnetic spin chains in their ordered phase by combinining an exact solution of the single-chain problem with an RPA analysis of the interchain interaction. A single chain is described by a quantum Sine-Gordon model and dynamical staggered susceptibilities are determined by employing the formfactor approach to quantum correlation functions. We consider both antiferromagnetic order encountered in quasi-1D materials like KCuF3KCuF_3 and spin-Peierls order as found in CuGeO3CuGeO_3.Comment: 16 pages of revtex, 12 figure
    corecore