2 research outputs found

    Abundance of whales in West and East Greenland in summer 2015

    Get PDF
    An aerial line transect survey of whales in West and East Greenland was conducted in August-September 2015. The survey covered the area between the coast of West Greenland and offshore (up to 100 km) to the shelf break. In East Greenland, the survey lines covered the area from the coast up to 50 km offshore crossing the shelf break. A total of 423 sightings of 12 cetacean species were obtained and abundance estimates were developed for common minke whale, (Balaenoptera acutorostrata) (32 sightings), fin whale (Balaenoptera physalus) (129 sightings), humpback whale (Megaptera novaeangliae) (84 sightings), harbour porpoise (Phocoena phocoena) (55 sightings), long-finned pilot whale, (Globicephala melas) (42 sightings) and white-beaked dolphin (Lagenorhynchus albirostri) (50 sightings). The developed at-surface abundance estimates were corrected for both perception bias and availability bias if possible. Data on surface corrections for minke whales and harbour porpoises were collected from whales instrumented with satellite-linked time-depth-recorders. Options for estimation methods are presented and the preferred estimates are: minke whales: 5,095 (95% CI: 2,171-11,961) in West Greenland and 2,762 (95% CI: 1,160-6,574) in East Greenland, fin whales: 2,215 (95% CI: 1,017-4,823) in West Greenland and 6,440 (95% CI: 3,901-10,632) in East Greenland, humpback whales: 993 (95% CI: 434-2,272) in West Greenland and 4,223 (95% CI: 1,845-9,666) in East Greenland, harbour porpoises: 83,321 (95% CI: 43,377-160,047) in West Greenland and 1,642 (95% CI: 319-8,464) in East Greenland, pilot whales: 9,190 (95% CI: 3,635-23,234) in West Greenland and 258 (95% CI: 50-1,354) in East Greenland, white-beaked dolphins 15,261 (95% CI: 7,048-33,046) in West Greenland and 11,889 (95% CI: 4,710-30,008) in East Greenland. The abundance of cetaceans in coastal areas of East Greenland has not been estimated before, but the limited historical information from the area indicates that the achieved abundance estimates were remarkably high. When comparing the abundance estimates from 2015 in West Greenland with a similar survey conducted in 2007, there is a clear trend towards lower densities in 2015 for the three baleen whale species and white-beaked dolphins. Harbour porpoises and pilot whales, however, did not show a similar decline. The decline in baleen whale and white-beaked dolphin abundance is likely due to emigration to the East Greenland shelf areas where recent climate driven changes in pelagic productivity may have accelerated favourable conditions for these species

    Drone-based photogrammetry reveals differences in humpback whale body condition and mass across North Atlantic foraging grounds

    Get PDF
    Baleen whales are key consumers in marine ecosystems and can serve as ecosystem sentinels. Body condition, defined as an individual’s energy stores relative to its structural size, can provide a useful proxy for health in baleen whales. As capital breeders, important life history events in baleen whales such as seasonal migrations and reproduction depend on having sufficient energy stores. Spatiotemporal variability of body condition of baleen whales can reflect differences in energy accumulated during the foraging season. Here we assess and compare the body condition and mass of humpback whales (Megaptera novaeangliae) across four different foraging areas from the West Indies distinct population segment in the Northwest Atlantic. Morphometric measurements of humpback whales were obtained using unoccupied aerial systems (UAS, or drones) from the New York Bight, the Gulf of Maine, Iceland, and Greenland. Uncertainty in morphometric estimates was incorporated and propagated using a bootstrapping approach. Measurements were used to estimate body volume and calculate a body condition index (BCI) for each individual whale. Since body mass is a key parameter for understanding animal physiology and bioenergetics, we further compared whale body mass to body size between foraging areas by converting body volume to body mass using estimates of tissue density from tagging studies. BCI showed significant differences between foraging areas with a large effect size (ANCOVA: mean η2 = 0.168; all p< 0.001) when incorporating day of year and year as covariates. Humpback whales in the Gulf of Maine showed significantly higher BCI than those in the New York Bight, Iceland, and Greenland. Standardized Major Axis (SMA) regressions comparing log-log relationships of both body volume and body mass, respectively, to total length reinforced these results. Humpback whales in the Gulf of Maine showed significantly higher elevation in the SMAs than those in the other study regions (p<0.001), implying that humpback whales foraging in the Gulf of Maine accumulated greater energy reserves for a given body size. Estimates of body mass indicate that for a given body length, humpback whales in the Gulf of Maine have an 18% greater body mass than those in the New York Bight, Iceland, or Greenland. Regional differences in prey availability or anthropogenic threats could contribute to the observed patterns in body condition. Our findings highlight the importance of regional environmental factors to the nutritional health of baleen whales
    corecore