15 research outputs found

    The safety of one, or repeated, vital capacity maneuvers during general anesthesia

    No full text
    A vital capacity maneuver (VCM) (inflating the lungs to 40 cm H(2)O for 15 s) is effective in relieving atelectasis during general anesthesia or after cardiopulmonary bypass (CPB). The study was undertaken to investigate the safety of one or repeated VCM. Five groups of six pigs were studied. Two groups had general anesthesia for 6 h and one group received a VCM every hour. Three other groups received CPB. VCM was performed after CPB in two of these groups. VCM was then repeated every hour in one of the groups. Lung damage was evaluated by extravascular lung water (EVLW) measurement, light microscopy, and the half-time (T(1/2)) of disappearance from the lung of a nebulized aerosol containing (99m)Tc-DTPA. No changes were noted in extravascular lung water. The pigs subjected to VCM decreased their T(1/2). In the groups exposed to repeated VCM, T(1/2) remained lowered (CPB pigs) or decreased over time (non-CPB pigs). No lung damage could be seen on the morphology study. These results suggest that one VCM is a safe procedure. The increase in lung clearance of (99m)Tc-DTPA not associated with an increase in lung water when VCM is repeated may have been caused by an increase in lung volume. Therefore, repeated VCM also appears to be safe. IMPLICATIONS: This study demonstrates in an animal model that inflating the lung once or repeatedly to the vital capacity is a safe procedure. This maneuver, also called the vital capacity maneuver, can be used to relieve lung collapse which occurs in all patients during general anesthesia

    The safety of one, or repeated, vital capacity maneuvers during general anesthesia

    No full text
    A vital capacity maneuver (VCM) (inflating the lungs to 40 cm H(2)O for 15 s) is effective in relieving atelectasis during general anesthesia or after cardiopulmonary bypass (CPB). The study was undertaken to investigate the safety of one or repeated VCM. Five groups of six pigs were studied. Two groups had general anesthesia for 6 h and one group received a VCM every hour. Three other groups received CPB. VCM was performed after CPB in two of these groups. VCM was then repeated every hour in one of the groups. Lung damage was evaluated by extravascular lung water (EVLW) measurement, light microscopy, and the half-time (T(1/2)) of disappearance from the lung of a nebulized aerosol containing (99m)Tc-DTPA. No changes were noted in extravascular lung water. The pigs subjected to VCM decreased their T(1/2). In the groups exposed to repeated VCM, T(1/2) remained lowered (CPB pigs) or decreased over time (non-CPB pigs). No lung damage could be seen on the morphology study. These results suggest that one VCM is a safe procedure. The increase in lung clearance of (99m)Tc-DTPA not associated with an increase in lung water when VCM is repeated may have been caused by an increase in lung volume. Therefore, repeated VCM also appears to be safe. IMPLICATIONS: This study demonstrates in an animal model that inflating the lung once or repeatedly to the vital capacity is a safe procedure. This maneuver, also called the vital capacity maneuver, can be used to relieve lung collapse which occurs in all patients during general anesthesia

    Use of a vital capacity maneuver to prevent atelectasis after cardiopulmonary bypass: an experimental study

    No full text
    BACKGROUND: Respiratory failure secondary to cardiopulmonary bypass (CPB) remains a major complication after cardiac surgery. The authors previously found that the increase in intrapulmonary shunt was well correlated with the amount of atelectasis. They tested the hypothesis that post-CPB atelectasis can be prevented by a vital capacity maneuver (VCM) performed before termination of the bypass. METHODS: Eighteen pigs received standard hypothermic CPB (no ventilation during bypass). The VCM was performed in two groups and consisted of inflating the lungs during 15 s to 40 cmH2O at the end of the bypass. In one group, the inspired oxygen fraction (FIO2) was then increased to 1.0. In the second group, the FIO2 was left at 0.4. In the third group, no VCM was performed (control group). Ventilation-perfusion distribution was measured with the inert gas technique and atelectasis by computed tomographic scanning. RESULTS: Intrapulmonary shunt increased after bypass in the control group (from 4.9 +/- 4% to 20.8 +/- 11.7%; P < 0.05) and was also increased in the vital capacity group ventilated with 100% oxygen (from 2.2 +/- 1.3% to 6.9 +/- 2.9%; P < 0.01) but was unaffected in the vital capacity group ventilated with 40% oxygen. The control pigs showed extensive atelectasis (21.3 +/- 15.8% of total lung area), which was significantly larger (P < 0.01) than the proportion of atelectasis found in the two vital capacity groups (5.7 +/- 5.7% for the vital capacity group ventilated with 100% oxygen and 2.3 +/- 2.1% for the vital capacity group ventilated with 40% oxygen. CONCLUSION: In this pig model, postcardiopulmonary bypass atelectasis was effectively prevented by a VCM
    corecore