42 research outputs found
NAPG: Non-Autoregressive Program Generation for Hybrid Tabular-Textual Question Answering
Hybrid tabular-textual question answering (QA) requires reasoning from
heterogeneous information, and the types of reasoning are mainly divided into
numerical reasoning and span extraction. Despite being the main challenge of
the task compared to extractive QA, current numerical reasoning method simply
uses LSTM to autoregressively decode program sequences, and each decoding step
produces either an operator or an operand. However, the step-by-step decoding
suffers from exposure bias, and the accuracy of program generation drops
sharply with progressive decoding. In this paper, we propose a
non-autoregressive program generation framework, which facilitates program
generation in parallel. Our framework, which independently generates complete
program tuples containing both operators and operands, can significantly boost
the speed of program generation while addressing the error accumulation issue.
Our experiments on the MultiHiertt dataset shows that our model can bring about
large improvements (+7.97 EM and +6.38 F1 points) over the strong baseline,
establishing the new state-of-the-art performance, while being much faster
(21x) in program generation. The performance drop of our method is also
significantly smaller than the baseline with increasing numbers of numerical
reasoning steps
Novel probiotics adsorbing and excreting microplastics in vivo show potential gut health benefits
Microplastics (MP) contamination in food and water poses significant health risks. While microbes that form biofilm show potential for removing MP from the environment, no methods currently exist to eliminate these non-degradable MP from the human body. In this study, we propose using probiotics to adsorb and remove ingested MP within the gut. We conducted a comprehensive evaluation of 784 bacterial strains to assess their ability to adsorb 0.1 μm polystyrene particles using a high-throughput screening method. Among the tested strains, Lacticaseibacillus paracasei DT66 and Lactiplantibacillus plantarum DT88 exhibited optimal adsorption in vitro and were effective across various MP types. In an animal model, mice treated with these probiotics demonstrated a 34% increase in PS excretion rates and a 67% reduction in residual polystyrene (PS) particles within the intestine. Additionally, administration of Lactiplantibacillus plantarum DT88 mitigated PS-induced intestinal inflammation. Together, our findings demonstrate a novel probiotic strategy for addressing MP-associated health risks, emphasizing the potential of strain-specific probiotics to remove MP from the gut environment
Effect of Multifrequency Ultrasonic-Assisted Vacuum Cooking on the Muscle Fiber Structure and Water-Holding Capacity of Stewed Marinated Beef
The effect of multifrequency ultrasonic-assisted vacuum cooking on the muscle fiber structure and water-holding capacity of stewed marinated beef was studied. Changes in the muscle fiber structure, texture properties and moisture content of stewed marinated beef prepared from beef shank under different ultrasonic frequencies (40/52/68, 40/52, 40/68, 52/68, 40, 52, 68 and 0 kHz) were measured. The results showed that with increasing the number of ultrasound frequencies, myofibrillar fragmentation index (MFI), the contents of β-turn and random coil increased, and the texture attribute of elasticity tended to increase, while the contents of α-helix and β-sheet decreased, and so did the hardness, chewiness, and cohesiveness of stewed marinated beef. Meanwhile, the solubility of connective tissue on the surface of muscle fibers increased, the separation and fracture of muscle fibers became more apparent. Low field-nuclear magnetic resonance (LF-NMR) results showed that ultrasound treatment caused a leftward shift of the transverse relaxation time (T2) and shortened it, thus changing the water distribution. As the number of ultrasonic frequencies increased, the shifting range of transverse relaxation time to the left increased, and the contents of bound water and free water also increased, while the content of quasi-bound water correspondingly decreased. Cooking loss was significantly lower in the triple-frequency group than in the dual-frequency and single-frequency groups, while the product yield showed an opposite trend, the highest value being found in the triple-frequency group. In summary, ultrasound treatment destroyed the muscle fiber structure and improved the water-holding capacity of stewed beef; the more the number of ultrasonic frequencies, the more pronounced the effect
A Comparative Analysis of Floral Scent Compounds in Intraspecific Cultivars of Prunus mume with Different Corolla Colours
Prunus mume is the only fragrant flowering species of Prunus. According to the previous studies, benzyl acetate and eugenol dominate its floral scent. However, the diversity of its floral scents remains to be elucidated. In this work, the floral volatiles emitted from eight intraspecific cultivars of P. mume with white, pink and red flowers, were collected and analyzed using headspace solid-phase microextraction combined with gas chromatograms-mass spectrometry (HS-SPME-GC-MS). In total, 31 volatile compounds were identified, in which phenylpropanoids/benzenoids accounted for over 95% of the total emission amounts. Surprisingly, except for benzyl acetate and eugenol, several novel components, such as benzyl alcohol, cinnamyl acohol, cinnamy acetate, and benzyl benzoate were found in some cultivars. The composition of floral volatiles in cultivars with white flowers was similar, in which benzyl acetate was dominant, while within pink flowers, there were differences of floral volatile compositions. Principal component analysis (PCA) showed that the emissions of benzyl alcohol, cinnamyl alcohol, benzyl acetate, eugenol, cinnamyl acetate, and benzyl benzoate could make these intraspecific cultivars distinguishable from each other. Further, hierarchical cluster analysis indicated that cultivars with similar a category and amount of floral compounds were grouped together. Our findings lay a theoretical basis for fragrant plant breeding in P. mume
The Auxin/Indole-3-Acetic Acid (Aux/IAA) Gene Family Analysis of Four Rosaceae Genomes and Expression Patterns of PmIAAs in Prunus mume
Auxin is an important phytohormone through plant growth and development. Aux/IAA protein, as a core component in the auxin signaling pathway, plays a vital role in various biological processes such as flower development and floral volatile metabolism in many plants. However, there were a few studies on the Aux/IAA gene family in Prunus plants in Rosaceae and expression patterns of PmIAAs in P. mume. Here, we identified a total of 108 RoIAA gene family members in four typical Rosaceae plants, which included 22 PmIAAs from P. mume, 22 PpIAAs from Prunus persica, 31 PdIAAs from Prunus dulcis and 33 PaIAAs from Prunus armeniaca. Subsequently, the results of the phylogenetic analysis of Aux/IAAs showed that they were categorized into ten groups, and gene structures and motifs were conservative in each group, suggesting that RoIAAs in Rosaceae species had a strong relationship. However, the physical distributions of RoIAAs on chromosomes of every species showed completely uneven. Gene duplications suggested that seven pairs of PmIAAs, eleven pairs of PpIAAs, eleven pairs of PdIAAs, and three pairs of PaIAAs suffered from tandem and segmental duplications. Moreover, the results of the synteny analysis indicated that RoIAAs in four Rosaceae species might come from one ancestor. To explore the roles of PmIAAs in P. mume, expression patterns in five tissues and at four flowering development stages were performed. The results showed that PmIAAs variously expressed in five tissues and five genes (PmIAA2, −9, −10, −12, and −15) might affect flower development and the synthesis of floral compounds in P. mume. This study provided valuable information for further elucidating the regulatory function of PmIAAs in metabolism processes in P. mume
Transcriptome analysis of Crossostephium chinensis provides insight into the molecular basis of salinity stress responses.
Soil salinization is becoming a limitation to the utilization of ornamental plants worldwide. Crossostephium chinensis (Linnaeus) Makino is often cultivated along the southeast coast of China for its desirable ornamental qualities and high salt tolerance. However, little is known about the genomic background of the salt tolerance mechanism in C. chinensis. In the present study, we used Illumina paired-end sequencing to systematically investigate leaf transcriptomes derived from C. chinensis seedlings grown under normal conditions and under salt stress. A total of 105,473,004 bp of reads were assembled into 163,046 unigenes, of which 65,839 (40.38% of the total) and 54,342 (33.32% of the total) were aligned in Swiss-Prot and Nr protein, respectively. A total of 11,331 (6.95%) differentially expressed genes (DEGs) were identified among three comparisons, including 2,239 in 'ST3 vs ST0', 5,880 in 'ST9 vs ST3' and 9,718 in 'ST9 vs ST0', and they were generally classified into 26 Gene Ontology terms and 58 Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway terms. Many genes encoding important transcription factors (e.g., WRKY, MYB, and AP2/EREBP) and proteins involved in starch and sucrose metabolism, arginine and proline metabolism, plant hormone signal transduction, amino acid biosynthesis, plant-pathogen interactions and carbohydrate metabolism, among others, were substantially up-regulated under salt stress. These genes represent important candidates for studying the salt-response mechanism and molecular biology of C. chinensis and its relatives. Our findings provide a genomic sequence resource for functional genetic assignments in C. chinensis. These transcriptome datasets will help elucidate the molecular mechanisms responsible for salt-stress tolerance in C. chinensis and facilitate the breeding of new stress-tolerant cultivars for high-saline areas using this valuable genetic resource
Comprehensive Analysis of Endogenous Volatile Compounds, Transcriptome, and Enzyme Activity Reveals PmCAD1 Involved in Cinnamyl Alcohol Synthesis in Prunus mume
Floral scent is an important economic and ornamental trait of Prunus mume. The floral volatiles from most cultivars of P. mume in composition exist significant differences. Cinnamyl alcohol was one of the main floral volatile compounds with distinct abundances in different cultivars, namely, ‘Zaohua Lve,’ ‘Zao Yudie,’ ‘Fenpi Gongfen,’ ‘Jiangsha Gongfen,’ and ‘Fenhong Zhusha.’ Based on the determination of endogenous volatiles of full-blooming flowers, vital enzyme activity and transcriptomes were comprehensively analyzed to screen the key potential genes involved in cinnamyl alcohol synthesis. Transcriptome combining with enzyme activity level analysis suggested that the expression levels of three PmCADs were highly correlated with the cinnamyl alcohol dehydrogenase (CAD) enzyme activities in six cultivars. Furthermore, phylogenetic tree and transcriptome analysis suggested that PmCAD1 and PmCAD2 might contribute to the cinnamyl alcohol synthesis. Relative expression analyses and enzyme activity assays showed that PmCAD1 played an important role in cinnamyl alcohol biosynthesis in vitro. Overall, this research lays a theoretical foundation for clarifying comprehensively the molecular biosynthesis mechanism of floral volatiles in P. mume.</jats:p
Characteristics and Expression Analyses of Trehalose-6-Phosphate Synthase Family in Prunus mume Reveal Genes Involved in Trehalose Biosynthesis and Drought Response
Trehalose and its key synthase (trehalose-6-phosphate synthase, TPS) can improve the drought tolerance of plants. However, little is known about the roles of trehalose and the TPS family in Prunus mume response to drought. In our study, we discovered that the trehalose content in leaf, root, and stem tissues significantly increased in P. mume in response to drought. Therefore, the characteristics and functions of the TPS family are worth investigating in P. mume. We identified nine TPS family members in P. mume, which were divided into two sub-families and characterized by gene structure, promoter elements, protein conserved domains, and protein motifs. We found that the Hydrolase_3 domain and several motifs were highly conserved in Group II instead of Group I. The distinctions between the two groups may result from selective constraints, which we estimated by the dN/dS (ω) ratio. The ω values of all the PmTPS family gene pairs were evaluated as less than 1, indicating that purity selection facilitated their divergence. A phylogenetic tree was constructed using 92 TPSs from 10 Rosaceae species, which were further divided into five clusters. Based on evolutionary analyses, the five clusters of TPS family proteins mainly underwent varied purity selection. The expression patterns of PmTPSs under drought suggested that the TPS family played an important role in the drought tolerance of P. mume. Combining the expression patterns of PmTPSs and the trehalose content changes in leaf, stem, and root tissues under normal conditions and drought stress, we found that the PmTPS2 and PmTPS6 mainly function in the trehalose biosynthesis in P. mume. Our findings not only provide valuable information about the functions of trehalose and TPSs in the drought response of P. mume, but they also contribute to the future drought breeding of P. mume.</jats:p
Screening of optimal reference genes for qRT-PCR and preliminary exploration of cold resistance mechanisms in Prunus mume and Prunus sibirica varieties
Identification of the Volatile Compounds and Observation of the Glandular Trichomes in Opisthopappus taihangensis and Four Species of Chrysanthemum
Opisthopappus taihangensis (Ling) Shih, a wild relative germplasm of chrysanthemum, releases a completely different fragrance from chrysanthemum species. We aimed to identify the volatile compounds of the leaves of O. taihangensis and four other Chrysanthemum species using headspace solid-phase micro-extraction combined with gas chromatography-mass spectrometry (HS-SPME-GC/MS). In total, 70 compounds were detected, and terpenoids accounted for the largest percentage in these five species. Many specific compounds were only emitted from O. taihangensis and not from the other four species. In particular, 1,8-cineole could be responsible for the special leaf fragrance of O. taihangensis as it accounted for the largest proportion of the compounds in O. taihangensis but a small or no proportion at all in other species. The glandular trichomes (GTs) in the leaves are the main organs responsible for the emission of volatiles. To explore the relationship between the emissions and the density of the GTs on the leaf epidermis, the shape and density of the GTs were observed and calculated, respectively. The results showed that the trichomes have two shapes in these leaves: T-shaped non-glandular trichomes and capitate trichomes. Histochemical staining analyses indicated that terpenoids are mainly emitted from capitate glandular trichomes. Correlation analysis showed that the volatile amount of terpenoids is highly related to the density of capitate trichomes. In O. taihangensis, the terpenoids content and density of capitate trichomes are the highest. We identified the diversity of leaf volatiles from O. taihangensis and four other Chrysanthemum species and found a possible relationship between the content of volatile compounds and the density of capitate trichomes, which explained the cause of the fragrance of O. taihangensis leaves.</jats:p
