4,524 research outputs found

    Optimal Save-Then-Transmit Protocol for Energy Harvesting Wireless Transmitters

    Full text link
    In this paper, the design of a wireless communication device relying exclusively on energy harvesting is considered. Due to the inability of rechargeable energy sources to charge and discharge at the same time, a constraint we term the energy half-duplex constraint, two rechargeable energy storage devices (ESDs) are assumed so that at any given time, there is always one ESD being recharged. The energy harvesting rate is assumed to be a random variable that is constant over the time interval of interest. A save-then-transmit (ST) protocol is introduced, in which a fraction of time {\rho} (dubbed the save-ratio) is devoted exclusively to energy harvesting, with the remaining fraction 1 - {\rho} used for data transmission. The ratio of the energy obtainable from an ESD to the energy harvested is termed the energy storage efficiency, {\eta}. We address the practical case of the secondary ESD being a battery with {\eta} < 1, and the main ESD being a super-capacitor with {\eta} = 1. The optimal save-ratio that minimizes outage probability is derived, from which some useful design guidelines are drawn. In addition, we compare the outage performance of random power supply to that of constant power supply over the Rayleigh fading channel. The diversity order with random power is shown to be the same as that of constant power, but the performance gap can be large. Furthermore, we extend the proposed ST protocol to wireless networks with multiple transmitters. It is shown that the system-level outage performance is critically dependent on the relationship between the number of transmitters and the optimal save-ratio for single-channel outage minimization. Numerical results are provided to validate our proposed study.Comment: This is the longer version of a paper to appear in IEEE Transactions on Wireless Communication

    Reductive dechlorination of polychlorinated biphenyls is coupled to nitrogen fixation by a legume-rhizobium symbiosis

    Get PDF
    Chlorinated persistent organic pollutants, including polychlorinated biphenyls (PCBs), represent a particularly serious environmental problem and human health risk worldwide. Leguminous plants and their symbiotic bacteria (rhizobia) are important components of the biogeochemical cycling of nitrogen in both agricultural and natural ecosystems. However, there have been relatively few detailed studies of the remediation of PCB-contaminated soils by legume-rhizobia symbionts. Here we report for the first time evidence of the reductive dechlorination of 2,4,4&#39;-trichlorobiphenyl (PCB 28) by an alfalfa-rhizobium nitrogen fixing symbiont. Alfalfa (Medicago sativa L.) inoculated with wild-type Sinorhizobium meliloti had significantly larger biomass and PCB 28 accumulation than alfalfa inoculated with the nitrogenase negative mutant rhizobium SmY. Dechlorination products of PCB 28, 2,4&#39;-dichlorobiphenyl (PCB 8), and the emission of chloride ion (Cl-) were also found to decrease significantly in the ineffective nodules infected by the mutant strain SmY. We therefore hypothesize that N2-fixation by the legume-rhizobium symbiont is coupled with the reductive dechlorination of PCBs within the nodules. The combination of these two processes is of great importance to the biogeochemical cycling and bioremediation of organochlorine pollutants in terrestrial ecosystems.</p
    corecore