1,598 research outputs found

    Physical Primitive Decomposition

    Full text link
    Objects are made of parts, each with distinct geometry, physics, functionality, and affordances. Developing such a distributed, physical, interpretable representation of objects will facilitate intelligent agents to better explore and interact with the world. In this paper, we study physical primitive decomposition---understanding an object through its components, each with physical and geometric attributes. As annotated data for object parts and physics are rare, we propose a novel formulation that learns physical primitives by explaining both an object's appearance and its behaviors in physical events. Our model performs well on block towers and tools in both synthetic and real scenarios; we also demonstrate that visual and physical observations often provide complementary signals. We further present ablation and behavioral studies to better understand our model and contrast it with human performance.Comment: ECCV 2018. Project page: http://ppd.csail.mit.edu

    Simulation Studies of the NLC with Improved Ground Motion Models

    Get PDF
    The performance of various systems of the Next Linear Collider (NLC) have been studied in terms of ground motion using recently developed models. In particular, the performance of the beam delivery system is discussed. Plans to evaluate the operation of the main linac beam-based alignment and feedback systems are also outlined.Comment: Submitted to XX International Linac Conferenc

    A Comparative Evaluation of Approximate Probabilistic Simulation and Deep Neural Networks as Accounts of Human Physical Scene Understanding

    Get PDF
    Humans demonstrate remarkable abilities to predict physical events in complex scenes. Two classes of models for physical scene understanding have recently been proposed: "Intuitive Physics Engines", or IPEs, which posit that people make predictions by running approximate probabilistic simulations in causal mental models similar in nature to video-game physics engines, and memory-based models, which make judgments based on analogies to stored experiences of previously encountered scenes and physical outcomes. Versions of the latter have recently been instantiated in convolutional neural network (CNN) architectures. Here we report four experiments that, to our knowledge, are the first rigorous comparisons of simulation-based and CNN-based models, where both approaches are concretely instantiated in algorithms that can run on raw image inputs and produce as outputs physical judgments such as whether a stack of blocks will fall. Both approaches can achieve super-human accuracy levels and can quantitatively predict human judgments to a similar degree, but only the simulation-based models generalize to novel situations in ways that people do, and are qualitatively consistent with systematic perceptual illusions and judgment asymmetries that people show.Comment: Accepted to CogSci 2016 as an oral presentatio

    Beam-based Feedback Simulations for the NLC Linac

    Get PDF
    Extensive beam-based feedback systems are planned as an integral part of the Next Linear Collider (NLC) control system. Wakefield effects are a significant influence on the feedback design, imposing both architectural and algorithmic constraints. Studies are in progress to assure the optimal selection of devices and to refine and confirm the algorithms for the system design. We show the results of initial simulations, along with evaluations of system response for various conditions of ground motion and other operational disturbances.Comment: 3 pages. Linac2000 conferenc

    Learning to Reconstruct Shapes from Unseen Classes

    Full text link
    From a single image, humans are able to perceive the full 3D shape of an object by exploiting learned shape priors from everyday life. Contemporary single-image 3D reconstruction algorithms aim to solve this task in a similar fashion, but often end up with priors that are highly biased by training classes. Here we present an algorithm, Generalizable Reconstruction (GenRe), designed to capture more generic, class-agnostic shape priors. We achieve this with an inference network and training procedure that combine 2.5D representations of visible surfaces (depth and silhouette), spherical shape representations of both visible and non-visible surfaces, and 3D voxel-based representations, in a principled manner that exploits the causal structure of how 3D shapes give rise to 2D images. Experiments demonstrate that GenRe performs well on single-view shape reconstruction, and generalizes to diverse novel objects from categories not seen during training.Comment: NeurIPS 2018 (Oral). The first two authors contributed equally to this paper. Project page: http://genre.csail.mit.edu

    Research in interactive scene analysis

    Get PDF
    An interactive scene interpretation system (ISIS) was developed as a tool for constructing and experimenting with man-machine and automatic scene analysis methods tailored for particular image domains. A recently developed region analysis subsystem based on the paradigm of Brice and Fennema is described. Using this subsystem a series of experiments was conducted to determine good criteria for initially partitioning a scene into atomic regions and for merging these regions into a final partition of the scene along object boundaries. Semantic (problem-dependent) knowledge is essential for complete, correct partitions of complex real-world scenes. An interactive approach to semantic scene segmentation was developed and demonstrated on both landscape and indoor scenes. This approach provides a reasonable methodology for segmenting scenes that cannot be processed completely automatically, and is a promising basis for a future automatic system. A program is described that can automatically generate strategies for finding specific objects in a scene based on manually designated pictorial examples

    Unsupervised Discovery of Parts, Structure, and Dynamics

    Full text link
    Humans easily recognize object parts and their hierarchical structure by watching how they move; they can then predict how each part moves in the future. In this paper, we propose a novel formulation that simultaneously learns a hierarchical, disentangled object representation and a dynamics model for object parts from unlabeled videos. Our Parts, Structure, and Dynamics (PSD) model learns to, first, recognize the object parts via a layered image representation; second, predict hierarchy via a structural descriptor that composes low-level concepts into a hierarchical structure; and third, model the system dynamics by predicting the future. Experiments on multiple real and synthetic datasets demonstrate that our PSD model works well on all three tasks: segmenting object parts, building their hierarchical structure, and capturing their motion distributions.Comment: ICLR 2019. The first two authors contributed equally to this wor

    Visual Object Networks: Image Generation with Disentangled 3D Representation

    Full text link
    Recent progress in deep generative models has led to tremendous breakthroughs in image generation. However, while existing models can synthesize photorealistic images, they lack an understanding of our underlying 3D world. We present a new generative model, Visual Object Networks (VON), synthesizing natural images of objects with a disentangled 3D representation. Inspired by classic graphics rendering pipelines, we unravel our image formation process into three conditionally independent factors---shape, viewpoint, and texture---and present an end-to-end adversarial learning framework that jointly models 3D shapes and 2D images. Our model first learns to synthesize 3D shapes that are indistinguishable from real shapes. It then renders the object's 2.5D sketches (i.e., silhouette and depth map) from its shape under a sampled viewpoint. Finally, it learns to add realistic texture to these 2.5D sketches to generate natural images. The VON not only generates images that are more realistic than state-of-the-art 2D image synthesis methods, but also enables many 3D operations such as changing the viewpoint of a generated image, editing of shape and texture, linear interpolation in texture and shape space, and transferring appearance across different objects and viewpoints.Comment: NeurIPS 2018. Code: https://github.com/junyanz/VON Website: http://von.csail.mit.edu
    corecore