36 research outputs found

    A Prognostic Model for the Thirty-day Mortality Risk after Adult Heart Transplantation

    Get PDF
    Objective: To develop a prognostic model for the thirty-day mortality risk after adult heart transplantation. Methods: In this report we developed a prediction model for the 30-day mortality risk after adult heart transplantation. Logistic regression analysis was used to develop the model in 1,262 adult patients undergoing primary heart transplantation. We evaluated the accuracy of the prediction model; the agreement between the predicted probability and the observed mortality (calibration); and the ability of the model to correctly discriminate between the discordant survival pairs (discrimination). The internal validity of the prediction model was evaluated using the bootstrapping procedures. Results: Recipients age and sex, pre-transplant diagnosis, transplant status, waiting time, cardiopulmonary bypass time, donors age and sex, donor-recipient mismatch for BMI and blood type were independent predictors for 30-day mortality risk after adult heart transplantation. The model showed a good calibration and reasonable discrimination (the corrected area under the receiver operating characteristic curve was 0.71). The internal validity of the prediction model was acceptable. For practical use, we converted the prediction model to score chart. Conclusion: The accuracy and the validity of the prediction model were acceptable. This easy-to-use instrument for predicting the 30-day mortality risk after adult heart transplantation would benefit decision-making by classifying recipients according to their mortality risk and allowing optimal allocation of a donor to a recipient for heart transplantation

    Intra-abdominal hypertension due to heparin - induced retroperitoneal hematoma in patients with ventricle assist devices: report of four cases and review of the literature

    Get PDF
    <p>Abstract</p> <p>Introduction</p> <p>Elevated intra-abdominal pressure (IAP) has been identified as a cascade of pathophysiologic changes leading in end-organ failure due to decreasing compliance of the abdomen and the development of abdomen compartment syndrome (ACS). Spontaneous retroperitoneal hematoma (SRH) is a rare clinical entity seen almost exclusively in association with anticoagulation states, coagulopathies and hemodialysis; that may cause ACS among patients in the intensive care unit (ICU) and if treated inappropriately represents a high mortality rate.</p> <p>Case Presentation</p> <p>We report four patients (a 36-year-old Caucasian female, a 59-year-old White-Asian male, a 64-year-old Caucasian female and a 61-year-old Caucasian female) that developed an intra-abdominal hypertension due to heparin-induced retroperitoneal hematomas after implantation of ventricular assist devices because of heart failure. Three of the patients presented with dyspnea at rest, fatigue, pleura effusions in chest XR and increased heart rate although b-blocker therapy. A 36-year old female (the forth patient) presented with sudden, severe shortness of breath at rest, 10 days after an "acute bronchitis". At the time of the event in all cases international normalized ratio (INR) was <3.5 and partial thromboplastin time <65 sec. The patients were treated surgically, the large hematomas were evacuated and the systemic manifestations of the syndrome were reversed.</p> <p>Conclusion</p> <p>Identifying patients in the ICU at risk for developing ACS with constant surveillance can lead to prevention. ACS is the natural progression of pressure-induced end-organ changes and develops if IAP is not recognized and treated in a timely manner. Failure to recognize and appropriately treat ACS is fatal while timely intervention - if indicated - is associated with improvements in organ function and patient survival. Means for surgical decision making are based on clinical indicators of adverse physiology, rather than on a single measured parameter.</p

    K201 improves aspects of the contractile performance of human failing myocardium via reduction in Ca2+ leak from the sarcoplasmic reticulum

    Get PDF
    In heart failure, intracellular Ca2+ leak from cardiac ryanodine receptors (RyR2s) leads to a loss of Ca2+ from the sarcoplasmic reticulum (SR) potentially contributing to decreased function. Experimental data suggest that the 1,4-benzothiazepine K201 (JTV-519) may stabilise RyR2s and thereby reduce detrimental intracellular Ca2+ leak. Whether K201 exerts beneficial effects in human failing myocardium is unknown. Therefore, we have studied the effects of K201 on muscle preparations from failing human hearts. K201 (0.3 μM; extracellular [Ca2+]e 1.25 mM) showed no effects on contractile function and micromolar concentrations resulted in negative inotropic effects (K201 1 μM; developed tension −9.8 ± 2.5% compared to control group; P < 0.05). Interestingly, K201 (0.3 μM) increased the post-rest potentiation (PRP) of failing myocardium after 120 s, indicating an increased SR Ca2+ load. At high [Ca2+]e concentrations (5 mmol/L), K201 increased PRP already at shorter rest intervals (30 s). Strikingly, treatment with K201 (0.3 μM) prevented diastolic dysfunction (diastolic tension at 5 mmol/L [Ca2+]e normalised to 1 mmol/L [Ca2+]e: control 1.26 ± 0.06, K201 1.01 ± 0.03, P < 0.01). In addition at high [Ca2+]e, K201 (0.3 μM) treatment significantly improved systolic function [developed tension +27 ± 8% (K201 vs. control); P < 0.05]. The beneficial effects on diastolic and systolic functions occurred throughout the physiological frequency range of the human heart rate from 1 to 3 Hz. Upon elevated intracellular Ca2+ concentration, systolic and diastolic contractile functions of terminally failing human myocardium are improved by K201

    Beneficial aspects of real time flow measurements for the management of acute right ventricular heart failure following continuous flow ventricular assist device implantation

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Optimal management of acute right heart failure following the implantation of a left ventricular assist device requires a reliable estimation of left ventricular preload and contractility. This is possible by real-time pump blood flow measurements.</p> <p>Clinical case</p> <p>We performed implantation of a continuous flow left ventricular assist device in a 66 years old female patient with an end-stage heart failure on the grounds of a dilated cardiomyopathy. Real-time pump blood flow was directly measured by an ultrasonic flow probe placed around the outflow graft.</p> <p>Diagnosis</p> <p>The progressive decline of real time flow and the loss of pulsatility were associated with an increase of central venous pressure, inotropic therapy and progressive renal failure suggesting the presence of an acute right heart failure. Diagnosis was validated by echocardiography and thermodilution measurements.</p> <p>Treatment</p> <p>Temporary mechanical circulatory support of the right ventricle was successfully performed. Real time flow measurement proved to be a useful tool for the diagnosis and ultimately for the management of right heart failure including the weaning from extracorporeal membrane oxygenation.</p

    Long-Term Survival After Cardiac Retransplantation

    No full text
    corecore