30 research outputs found

    Circulating Angiopoietins-1 and -2, Angiopoietin Receptor Tie-2 and Vascular Endothelial Growth Factor-A as Biomarkers of Acute Myocardial Infarction: a Prospective Nested Case-Control Study

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Angiogenesis is up-regulated in myocardial ischemia. However, limited data exist assessing the value of circulating angiogenic biomarkers in predicting future incidence of acute myocardial infarction (AMI). Our aim was to examine the association between circulating levels of markers of angiogenesis with risk of incident acute myocardial infarction (AMI) in men and women.</p> <p>Methods</p> <p>We performed a case-control study (nested within a large cohort of persons receiving care within Kaiser Permanente of Northern California) including 695 AMI cases and 690 controls individually matched on age, gender and race/ethnicity.</p> <p>Results</p> <p>Median [inter-quartile range] serum concentrations of vascular endothelial growth factor-A (VEGF-A; 260 [252] vs. 235 [224] pg/mL; p = 0.01) and angiopoietin-2 (Ang-2; 1.18 [0.66] vs. 1.05 [0.58] ng/mL; p < 0.0001) were significantly higher in AMI cases than in controls. By contrast, endothelium-specific receptor tyrosine kinase (Tie-2; 14.2 [3.7] vs. 14.0 [3.1] ng/mL; p = 0.07) and angiopoietin-1 levels (Ang-1; 33.1 [13.6] vs. 32.5 [12.7] ng/mL; p = 0.52) did not differ significantly by case-control status. After adjustment for educational attainment, hypertension, diabetes, smoking, alcohol consumption, body mass index, LDL-C, HDL-C, triglycerides and C-reactive protein, each increment of 1 unit of Ang-2 as a Z score was associated with 1.17-fold (95 percent confidence interval, 1.02 to 1.35) increased odds of AMI, and the upper quartile of Ang-2, relative to the lowest quartile, was associated with 1.63-fold (95 percent confidence interval, 1.09 to 2.45) increased odds of AMI.</p> <p>Conclusions</p> <p>Our data support a role of Ang-2 as a biomarker of incident AMI independent of traditional risk factors.</p

    Regulation of Endothelial Cell Adhesion Molecule Expression by Mast Cells, Macrophages, and Neutrophils

    Get PDF
    Leukocyte adhesion to the vascular endothelium and subsequent transendothelial migration play essential roles in the pathogenesis of cardiovascular diseases such as atherosclerosis. The leukocyte adhesion is mediated by localized activation of the endothelium through the action of inflammatory cytokines. The exact proinflammatory factors, however, that activate the endothelium and their cellular sources remain incompletely defined.Using bone marrow-derived mast cells from wild-type, Tnf(-/-), Ifng(-/-), Il6(-/-) mice, we demonstrated that all three of these pro-inflammatory cytokines from mast cells induced the expression of vascular cell adhesion molecule-1 (VCAM-1), intercellular adhesion molecule-1 (ICAM-1), P-selectin, and E-selectin in murine heart endothelial cells (MHEC) at both mRNA and protein levels. Compared with TNF-Îą and IL6, IFN-Îł appeared weaker in the induction of the mRNA levels, but at protein levels, both IL6 and IFN-Îł were weaker inducers than TNF-Îą. Under physiological shear flow conditions, mast cell-derived TNF-Îą and IL6 were more potent than IFN-Îł in activating MHEC and in promoting neutrophil adhesion. Similar observations were made when neutrophils or macrophages were used. Neutrophils and macrophages produced the same sets of pro-inflammatory cytokines as did mast cells to induce MHEC adhesion molecule expression, with the exception that macrophage-derived IFN-Îł showed negligible effect in inducing VCAM-1 expression in MHEC.Mast cells, neutrophils, and macrophages release pro-inflammatory cytokines such as TNF-Îą, IFN-Îł, and IL6 that induce expression of adhesion molecules in endothelium and recruit of leukocytes, which is essential to the pathogenesis of vascular inflammatory diseases

    Concertina

    No full text
    corecore