879 research outputs found
A study of cross sections for excitation of pseudostates
Using the electron-hydrogen scattering Temkin-Poet model we investigate the
behavior of the cross sections for excitation of all of the states used in the
convergent close-coupling (CCC) formalism. In the triplet channel, it is found
that the cross section for exciting the positive-energy states is approximately
zero near-threshold and remains so until a further energy, equal to the energy
of the state, is added to the system. This is consistent with the step-function
hypothesis [Bray, Phys. Rev. Lett. {\bf 78} 4721 (1997)] and inconsistent with
the expectations of Bencze and Chandler [Phys. Rev. A {\bf 59} 3129 (1999)].
Furthermore, we compare the results of the CCC-calculated triplet and singlet
single differential cross sections with the recent benchmark results of
Baertschy et al. [Phys. Rev. A (to be published)], and find consistent
agreement.Comment: Four pages, 5 figure
Distributing the burdens of climate change
Global climate change raises many questions for environmental political theorists. This article focuses on the question of identifying the agents that should bear the financial burden of preventing dangerous climate change. Identifying in a fair way the agents that should take the lead in climate mitigation and adaptation, as well as the precise burdens that these parties must bear, will be a key aspect of the next generation of global climate policies. After a critical review of a number of rival approaches to burden sharing, the paper argues that only a principled and philosophically robust reconciliation of three approaches to burden sharing (‘contribution to problem’, ‘ability to pay’ and ‘beneficiary pays’) can generate a satisfactory mix of theoretical coherence and practical application
Regulatory Costs: Who Pays in the End? Residential Developers' 'Rule of Thumb' and the Incidence of Regulatory Costs
Since the turn of the century, governments have placed restrictions on the location and characteristics of new buildings, the primary reason being the recognition that new construction created negative side-effects for surrounding residents.' Consequently, it is difficult for most housing analysts to advocate eliminating all government regulations relating to housing production. However, there is disagreement among housing policy observers about what level of regulations is socially desirable. The key task of researchers is to establish the costs of regulation so that the benefits of these regulations, which accrue both to the home buyer and residents of the larger neighborhood, can be compared to the costs incurred by housing consumers. Therefore, proper measurement of regulation costs is an essential element of any policy debate surrounding regulatory reform of the housing development process
Compact High-Voltage Generator of Primary Power Based on Shock Wave Depolarization of Lead Zirconate Titanate Piezoelectric Ceramics
The design and performance of a compact explosive-driven high-voltage primary power generator is presented. The generator utilizes a fundamental physical effect—depolarization of ferroelectric materials under longitudinal shock wave impact, when the shock wave is initiated along the polarization vector P. These primary power sources, containing energy-carrying elements made of lead zirconate titanate poled piezoelectric ceramics, with the volume from 0.35 to 3.3 cm3, are capable of producing pulses of high voltage with amplitudes up to 21.4 kV. The amplitude and full width at half-maximum of the high-voltage pulses are directly proportional to the thickness of the energy-carrying element, with coefficients of proportionality of 3.42±0.12 kV/mm (amplitude) and 0.125±0.01 µs/mm (width). The specific energy density of these ferroelectric energy-carrying elements reaches 76 mJ/cm3
- …