2 research outputs found

    Screening, identification, and antibiotic activity of secondary metabolites of Penicillium sp. LPB2019K3-2 isolated from endemic amphipods of Lake Baikal

    Get PDF
    This study aimed to assess the influence of nutrient media content on the production of antibiotics and the ability of water fungi isolated from lake Baikal to synthesize novel natural products. Interest in this topic stems from the high demand for new drugs, and studies are carried out via the screening of new natural products with biological activity produced by unstudied or extremophilic microorganisms. For this study, a strain of Penicillium sp. was isolated from endemic Baikal phytophagous amphipod species. Here, we identified natural products using the following classical assays: biotechnological cultivation, MALDI identification of the strain, natural product extraction, antimicrobial activity determination, and modern methods such as HPLC-MS for the dereplication and description of natural products. It was found that many detected metabolites were not included in the most extensive database. Most of the identified metabolites were characterized by their biological activity and demonstrated antibiotic activity against model Gram-positive and Gram-negative bacteria. The isolated strain of water fungus produced penicolinate B, meleagrin A, austinoneol A, andrastin A, and other natural products. Additionally, we show that the synthesis of low-molecular-weight natural products depends on the composition of the microbiological nutrient media used for cultivation. Thus, although the golden age of antibiotics ended many years ago and microscopic fungi are well studied producers of known antibiotics, the water fungi of the Lake Baikal ecosystem possess great potential in the search for new natural products for the development of new drugs. These natural products can become new pharmaceuticals and can be used in therapy to treat new diseases such as SARS, MERS, H5N1, etc

    FIRST REPORT ON TRUFFLE-INHABITING FUNGI AND METAGENOMIC COMMUNITIES OF TUBER AESTIVUM COLLECTED IN RUSSIA

    Get PDF
    Truffles are one of the least studied groups of fungi in terms of their biological and biotechnological aspects. This study aimed to isolate truffle-inhabiting fungi and assess the metagenomic communities of the most common Russian summer truffle, Tuber aestivum. This study is the first to characterize the biodiversity of prokaryotic and eukaryotic organisms living in the truffle T. aestivum using molecular analysis and sequencing. Plant pathogens involved in a symbiotic relationship with truffles were identified by sequencing the hypervariable fragments of the 16S rRNA and 18S rRNA genes. In addition, some strains of fungal symbionts and likely pathogens were isolated and recognized for the first time from the truffles. This study also compared and characterized the general diversity and distribution of microbial taxa of T. aestivum collected in Russia and Europe. The results revealed that the Russian and European truffle study materials demonstrated high similarity. In addition to the truffles, representatives of bacteria, fungi, and protists were found in the fruiting bodies. Many of these prokaryotic and eukaryotic species inhabiting truffles might influence them, help them form mycorrhizae with trees, and regulate biological processes. Thus, truffles are interesting and promising sources for modern biotechnological and agricultural studies
    corecore