71 research outputs found

    Exploring variations in childhood stunting in Nigeria using league table, control chart and spatial analysis

    Get PDF
    Background: Stunting, linear growth retardation is the best measure of child health inequalities as it captures multiple dimensions of children’s health, development and environment where they live. The developmental priorities and socially acceptable health norms and practices in various regions and states within Nigeria remains disaggregated and with this, comes the challenge of being able to ascertain which of the regions and states identifies with either high or low childhood stunting to further investigate the risk factors and make recommendations for action oriented policy decisions. Methods: We used data from the birth histories included in the 2008 Nigeria Demographic and Health Survey (DHS) to estimate childhood stunting. Stunting was defined as height for age below minus two standard deviations from the median height for age of the standard World Health Organization reference population. We plotted control charts of the proportion of childhood stunting for the 37 states (including federal capital, Abuja) in Nigeria. The Local Indicators of Spatial Association (LISA) were used as a measure of the overall clustering and is assessed by a test of a null hypothesis. Results: Childhood stunting is high in Nigeria with an average of about 39%. The percentage of children with stunting ranged from 11.5% in Anambra state to as high as 60% in Kebbi State. Ranking of states with respect to childhood stunting is as follows: Anambra and Lagos states had the least numbers with 11.5% and 16.8% respectively while Yobe, Zamfara, Katsina, Plateau and Kebbi had the highest (with more than 50% of their underfives having stunted growth). Conclusions: Childhood stunting is high in Nigeria and varied significantly across the states. The northern states have a higher proportion than the southern states. There is an urgent need for studies to explore factors that may be responsible for these special cause variations in childhood stunting in Nigeria

    Activation of Estrogen-Responsive Genes Does Not Require Their Nuclear Co-Localization

    Get PDF
    The spatial organization of the genome in the nucleus plays a role in the regulation of gene expression. Whether co-regulated genes are subject to coordinated repositioning to a shared nuclear space is a matter of considerable interest and debate. We investigated the nuclear organization of estrogen receptor alpha (ERα) target genes in human breast epithelial and cancer cell lines, before and after transcriptional activation induced with estradiol. We find that, contrary to another report, the ERα target genes TFF1 and GREB1 are distributed in the nucleoplasm with no particular relationship to each other. The nuclear separation between these genes, as well as between the ERα target genes PGR and CTSD, was unchanged by hormone addition and transcriptional activation with no evidence for co-localization between alleles. Similarly, while the volume occupied by the chromosomes increased, the relative nuclear position of the respective chromosome territories was unaffected by hormone addition. Our results demonstrate that estradiol-induced ERα target genes are not required to co-localize in the nucleus

    Three-dimensional super-resolution microscopy of the inactive X chromosome territory reveals a collapse of its active nuclear compartment harboring distinct Xist RNA foci

    Get PDF
    Background: A Xist RNA decorated Barr body is the structural hallmark of the compacted inactive X territory in female mammals. Using super resolution three-dimensional structured illumination microscopy (3D-SIM) and quantitative image analysis, we compared its ultrastructure with active chromosome territories (CTs) in human and mouse somatic cells, and explored the spatio-temporal process of Barr body formation at onset of inactivation in early differentiating mouse embryonic stem cells (ESCs). Results: We demonstrate that all CTs are composed of structurally linked chromatin domain clusters (CDCs). In active CTs the periphery of CDCs harbors low-density chromatin enriched with transcriptionally competent markers, called the perichromatin region (PR). The PR borders on a contiguous channel system, the interchromatin compartment (IC), which starts at nuclear pores and pervades CTs. We propose that the PR and macromolecular complexes in IC channels together form the transcriptionally permissive active nuclear compartment (ANC). The Barr body differs from active CTs by a partially collapsed ANC with CDCs coming significantly closer together, although a rudimentary IC channel system connected to nuclear pores is maintained. Distinct Xist RNA foci, closely adjacent to the nuclear matrix scaffold attachment factor-A (SAF-A) localize throughout Xi along the rudimentary ANC. In early differentiating ESCs initial Xist RNA spreading precedes Barr body formation, which occurs concurrent with the subsequent exclusion of RNA polymerase II (RNAP II). Induction of a transgenic autosomal Xist RNA in a male ESC triggers the formation of an `autosomal Barr body' with less compacted chromatin and incomplete RNAP II exclusion. Conclusions: 3D-SIM provides experimental evidence for profound differences between the functional architecture of transcriptionally active CTs and the Barr body. Basic structural features of CT organization such as CDCs and IC channels are however still recognized, arguing against a uniform compaction of the Barr body at the nucleosome level. The localization of distinct Xist RNA foci at boundaries of the rudimentary ANC may be considered as snap-shots of a dynamic interaction with silenced genes. Enrichment of SAF-A within Xi territories and its close spatial association with Xist RNA suggests their cooperative function for structural organization of Xi

    Evaluation environnementale des matériaux et des procédés de construction : application de l'analyse du cycle de vie à la construction d'un hall industriel

    Full text link
    Methodologies based on Life Cycle Assesment (L.C.A) give the opportunity to realise a global and complete evaluation of the environmental effects of products from their production to their use and elimination (from craddle to grave); methods used for analysis are internationally wellknown and standardised. These methods are rarely used in construction materials area, although materials flows and energy consumption are important and constructions have a long way of life. A calculation methodology, based on ecofactors/ecopoints, has been used for the analysis of industrial hall made of concrete, steel, or concrete/wood structure; materials but also construction process are compared at the point of view of their environmental impact. This analysis completes the technical and economical approaches for the construction owner and designer and gives a global view of the interaction between construction and civil engineering, and environment
    • 

    corecore