56 research outputs found

    Airway Occlusion Pressure As an Estimate of Respiratory Drive and Inspiratory Effort during Assisted Ventilation.

    No full text
    Rationale: Monitoring and controlling respiratory drive and effort may help to minimize lung and diaphragm injury. Airway occlusion pressure (P0.1) is a noninvasive measure of respiratory drive.Objectives: To determine 1) the validity of "ventilator" P0.1 (P0.1vent) displayed on the screen as a measure of drive, 2) the ability of P0.1 to detect potentially injurious levels of effort, and 3) how P0.1vent displayed by different ventilators compares to a "reference" P0.1 (P0.1ref) measured from airway pressure recording during an occlusion.Methods: Analysis of three studies in patients, one in healthy subjects, under assisted ventilation, and a bench study with six ventilators. P0.1vent was validated against measures of drive (electrical activity of the diaphragm and muscular pressure over time) and P0.1ref. Performance of P0.1ref and P0.1vent to detect predefined potentially injurious effort was tested using derivation and validation datasets using esophageal pressure-time product as the reference standard.Measurements and Main Results: P0.1vent correlated well with measures of drive and with the esophageal pressure-time product (within-subjects R <sup>2</sup> = 0.8). P0.1ref >3.5 cm H <sub>2</sub> O was 80% sensitive and 77% specific for detecting high effort (≥200 cm H <sub>2</sub> O ⋅ s ⋅ min <sup>-1</sup> ); P0.1ref ≤1.0 cm H <sub>2</sub> O was 100% sensitive and 92% specific for low effort (≤50 cm H <sub>2</sub> O ⋅ s ⋅ min <sup>-1</sup> ). The area under the receiver operating characteristics curve for P0.1vent to detect potentially high and low effort were 0.81 and 0.92, respectively. Bench experiments showed a low mean bias for P0.1vent compared with P0.1ref for most ventilators but precision varied; in patients, precision was lower. Ventilators estimating P0.1vent without occlusions could underestimate P0.1ref.Conclusions: P0.1 is a reliable bedside tool to assess respiratory drive and detect potentially injurious inspiratory effort

    A novel non-invasive method to detect excessively high respiratory effort and dynamic transpulmonary driving pressure during mechanical ventilation

    No full text
    Abstract Background Excessive respiratory muscle effort during mechanical ventilation may cause patient self-inflicted lung injury and load-induced diaphragm myotrauma, but there are no non-invasive methods to reliably detect elevated transpulmonary driving pressure and elevated respiratory muscle effort during assisted ventilation. We hypothesized that the swing in airway pressure generated by respiratory muscle effort under assisted ventilation when the airway is briefly occluded (ΔPocc) could be used as a highly feasible non-invasive technique to screen for these conditions. Methods Respiratory muscle pressure (Pmus), dynamic transpulmonary driving pressure (ΔPL,dyn, the difference between peak and end-expiratory transpulmonary pressure), and ΔPocc were measured daily in mechanically ventilated patients in two ICUs in Toronto, Canada. A conversion factor to predict ΔPL,dyn and Pmus from ΔPocc was derived and validated using cross-validation. External validity was assessed in an independent cohort (Nanjing, China). Results Fifty-two daily recordings were collected in 16 patients. In this sample, Pmus and ΔPL were frequently excessively high: Pmus exceeded 10 cm H2O on 84% of study days and ΔPL,dyn exceeded 15 cm H2O on 53% of study days. ΔPocc measurements accurately detected Pmus > 10 cm H2O (AUROC 0.92, 95% CI 0.83–0.97) and ΔPL,dyn > 15 cm H2O (AUROC 0.93, 95% CI 0.86–0.99). In the external validation cohort (n = 12), estimating Pmus and ΔPL,dyn from ΔPocc measurements detected excessively high Pmus and ΔPL,dyn with similar accuracy (AUROC ≥ 0.94). Conclusions Measuring ΔPocc enables accurate non-invasive detection of elevated respiratory muscle pressure and transpulmonary driving pressure. Excessive respiratory effort and transpulmonary driving pressure may be frequent in spontaneously breathing ventilated patients
    corecore