54 research outputs found
Parent reported sleep problems in preschool children with sickle cell anemia and controls in East London
Snoring and poor sleep may affect cognition, particularly in young children with chronic conditions. Parents of London preschoolers with sickle cell anemia (SCA; n = 22), matched controls (n = 24), and unselected typically developing (n = 142) preschoolers completed sleep questionnaires. Preschoolers with SCA had significantly more sleep problems when compared to matched controls and the larger population. Snoring occurred at least one to two nights a week for 79% of the SCA group. This is compared with 25% of matched controls and 33% of larger population. Randomized controlled trials to improve sleep in young children with SCA already at-risk for cognitive dysfunction should be considered
Temperament in preschool children with sickle cell anaemia
Aims Few studies have investigated the potential
impact of sickle cell anaemia (SCA) on temperament. The
aim of the current study was to investigate temperament
in preschool children with SCA and to establish the
reliability of the Children’s Behaviour Questionnaire
(CBQ) in this population.
Methods The CBQ, a parent-report measure of
temperament, was completed by parents of 21 preschool
children with SCA and a control group of parents of
typically developing children, matched for age, ethnicity
and socioeconomic status.
Results A significant difference between groups was
identified for the dimension of negative affectivity only,
with specific differences observed in the discomfort
subdomain. Patients with a greater number of hospital
admissions in the previous year were reported to have
higher levels of discomfort.
Conclusions Preschool children with SCA are reported
to have higher rates of negative affectivity, particularly
discomfort. Future research is required to investigate the
potential influence of dysregulated negative emotions
and discomfort on disease management and quality of
life throughout childhood
Factors affecting health-related quality of life in Thai children with thalassemia
<p>Abstract</p> <p>Background</p> <p>Knowledge of the factors associated with health-related quality of life (HRQOL) among patients with thalassemia is essential in developing more suitable clinical, counseling, and social support programs to improve treatment outcomes of these patients. In light of the limited research in this area, this study aims to examine factors associated with HRQOL among children and adolescents with thalassemia in Thailand.</p> <p>Methods</p> <p>A cross-sectional survey was conducted in three selected hospitals in Thailand during June to November 2006. PedsQL™ 4.0 Generic Core Scale (Thai version) was used to assess HRQOL in 315 thalassemia patients between 5 and 18 years of age. Other related clinical characteristics of the patients were collected via medical record review.</p> <p>Results</p> <p>The mean (SD) of the total summary score was 76.67 (11.40), while the means (SD) for the Physical Health Summary score and Psychosocial Health Summary score were 78.24 (14.77) and 75.54 (12.76), respectively. The school functioning subscale scored the lowest, with a mean of 67.89 (SD = 15.92). The following factors significantly affected the HRQOL of the patients: age; age at onset of anemia and age at first transfusion; pre-transfusion hemoglobin (Hb) level; receiving a blood transfusion during the previous three months; and disease severity. In addition, iron chelation therapy had a significant negative effect on HRQOL in the school functioning subscale. In contrast, serum ferritin level, frequency of blood transfusions per year, and gender were not significantly related to HRQOL among these patients. The results from multivariate analysis also confirmed these findings.</p> <p>Conclusions</p> <p>To improve HRQOL of thalassemia patients, suitable programs aimed at providing psychosocial support and a link between the patient, school officials, the family and the physician are important, especially in terms of improving the school functioning score. The findings also confirmed the importance of maintaining a pre-transfusion Hb level of at least 9-10.5 g/dL. In addition, special care and attention should be given to patients with a severe condition, and those who are receiving subcutaneous iron chelation therapy.</p
Calibration of myocardial T2 and T1 against iron concentration.
BACKGROUND: The assessment of myocardial iron using T2* cardiovascular magnetic resonance (CMR) has been validated and calibrated, and is in clinical use. However, there is very limited data assessing the relaxation parameters T1 and T2 for measurement of human myocardial iron.
METHODS: Twelve hearts were examined from transfusion-dependent patients: 11 with end-stage heart failure, either following death (n=7) or cardiac transplantation (n=4), and 1 heart from a patient who died from a stroke with no cardiac iron loading. Ex-vivo R1 and R2 measurements (R1=1/T1 and R2=1/T2) at 1.5 Tesla were compared with myocardial iron concentration measured using inductively coupled plasma atomic emission spectroscopy.
RESULTS: From a single myocardial slice in formalin which was repeatedly examined, a modest decrease in T2 was observed with time, from mean (± SD) 23.7 ± 0.93 ms at baseline (13 days after death and formalin fixation) to 18.5 ± 1.41 ms at day 566 (p<0.001). Raw T2 values were therefore adjusted to correct for this fall over time. Myocardial R2 was correlated with iron concentration [Fe] (R2 0.566, p<0.001), but the correlation was stronger between LnR2 and Ln[Fe] (R2 0.790, p<0.001). The relation was [Fe] = 5081•(T2)-2.22 between T2 (ms) and myocardial iron (mg/g dry weight). Analysis of T1 proved challenging with a dichotomous distribution of T1, with very short T1 (mean 72.3 ± 25.8 ms) that was independent of iron concentration in all hearts stored in formalin for greater than 12 months. In the remaining hearts stored for <10 weeks prior to scanning, LnR1 and iron concentration were correlated but with marked scatter (R2 0.517, p<0.001). A linear relationship was present between T1 and T2 in the hearts stored for a short period (R2 0.657, p<0.001).
CONCLUSION: Myocardial T2 correlates well with myocardial iron concentration, which raises the possibility that T2 may provide additive information to T2* for patients with myocardial siderosis. However, ex-vivo T1 measurements are less reliable due to the severe chemical effects of formalin on T1 shortening, and therefore T1 calibration may only be practical from in-vivo human studies
On improvement in ejection fraction with iron chelation in thalassemia major and the risk of future heart failure
<p>Abstract</p> <p>Background</p> <p>Trials of iron chelator regimens have increased the treatment options for cardiac siderosis in beta-thalassemia major (TM) patients. Treatment effects with improved left ventricular (LV) ejection fraction (EF) have been observed in patients without overt heart failure, but it is unclear whether these changes are clinically meaningful.</p> <p>Methods</p> <p>This retrospective study of a UK database of TM patients modelled the change in EF between serial scans measured by cardiovascular magnetic resonance (CMR) to the relative risk (RR) of future development of heart failure over 1 year. Patients were divided into 2 strata by baseline LVEF of 56-62% (below normal for TM) and 63-70% (lower half of the normal range for TM).</p> <p>Results</p> <p>A total of 315 patients with 754 CMR scans were analyzed. A 1% absolute increase in EF from baseline was associated with a statistically significant reduction in the risk of future development of heart failure for both the lower EF stratum (EF 56-62%, RR 0.818, p < 0.001) and the higher EF stratum (EF 63-70%, RR 0.893 p = 0.001).</p> <p>Conclusion</p> <p>These data show that during treatment with iron chelators for cardiac siderosis, small increases in LVEF in TM patients are associated with a significantly reduced risk of the development of heart failure. Thus the iron chelator induced improvements in LVEF of 2.6% to 3.1% that have been observed in randomized controlled trials, are associated with risk reductions of 25.5% to 46.4% for the development of heart failure over 12 months, which is clinically meaningful. In cardiac iron overload, heart mitochondrial dysfunction and its relief by iron chelation may underlie the changes in LV function.</p
Body iron metabolism and pathophysiology of iron overload
Iron is an essential metal for the body, while excess iron accumulation causes organ dysfunction through the production of reactive oxygen species. There is a sophisticated balance of body iron metabolism of storage and transport, which is regulated by several factors including the newly identified peptide hepcidin. As there is no passive excretory mechanism of iron, iron is easily accumulated when exogenous iron is loaded by hereditary factors, repeated transfusions, and other diseased conditions. The free irons, non-transferrin-bound iron, and labile plasma iron in the circulation, and the labile iron pool within the cells, are responsible for iron toxicity. The characteristic features of advanced iron overload are failure of vital organs such as liver and heart in addition to endocrine dysfunctions. For the estimation of body iron, there are direct and indirect methods available. Serum ferritin is the most convenient and widely available modality, even though its specificity is sometimes problematic. Recently, new physical detection methods using magnetic resonance imaging and superconducting quantum interference devices have become available to estimate iron concentration in liver and myocardium. The widely used application of iron chelators with high compliance will resolve the problems of organ dysfunction by excess iron and improve patient outcomes
Range Expansion Drives Dispersal Evolution In An Equatorial Three-Species Symbiosis
A-09-14International audienceBackground Recurrent climatic oscillations have produced dramatic changes in species distributions. This process has been proposed to be a major evolutionary force, shaping many life history traits of species, and to govern global patterns of biodiversity at different scales. During range expansions selection may favor the evolution of higher dispersal, and symbiotic interactions may be affected. It has been argued that a weakness of climate fluctuation-driven range dynamics at equatorial latitudes has facilitated the persistence there of more specialized species and interactions. However, how much the biology and ecology of species is changed by range dynamics has seldom been investigated, particularly in equatorial regions. Methodology/Principal Findings We studied a three-species symbiosis endemic to coastal equatorial rainforests in Cameroon, where the impact of range dynamics is supposed to be limited, comprised of two species-specific obligate mutualists –an ant-plant and its protective ant– and a species-specific ant parasite of this mutualism. We combined analyses of within-species genetic diversity and of phenotypic variation in a transect at the southern range limit of this ant-plant system. All three species present congruent genetic signatures of recent gradual southward expansion, a result compatible with available regional paleoclimatic data. As predicted, this expansion has been accompanied by the evolution of more dispersive traits in the two ant species. In contrast, we detected no evidence of change in lifetime reproductive strategy in the tree, nor in its investment in food resources provided to its symbiotic ants. Conclusions/Significance Despite the decreasing investment in protective workers and the increasing investment in dispersing females by both the mutualistic and the parasitic ant species, there was no evidence of destabilization of the symbiosis at the colonization front. To our knowledge, we provide here the first evidence at equatorial latitudes that biological traits associated with dispersal are affected by the range expansion dynamics of a set of interacting species
The impact of co-infections on fish: a review
International audienceAbstractCo-infections are very common in nature and occur when hosts are infected by two or more different pathogens either by simultaneous or secondary infections so that two or more infectious agents are active together in the same host. Co-infections have a fundamental effect and can alter the course and the severity of different fish diseases. However, co-infection effect has still received limited scrutiny in aquatic animals like fish and available data on this subject is still scarce. The susceptibility of fish to different pathogens could be changed during mixed infections causing the appearance of sudden fish outbreaks. In this review, we focus on the synergistic and antagonistic interactions occurring during co-infections by homologous or heterologous pathogens. We present a concise summary about the present knowledge regarding co-infections in fish. More research is needed to better understand the immune response of fish during mixed infections as these could have an important impact on the development of new strategies for disease control programs and vaccination in fish
Controlled Trial of Transfusions for Silent Cerebral Infarcts in Sickle Cell Anemia
BACKGROUND
Silent cerebral infarcts are the most common neurologic injury in children with sickle cell anemia and are associated with the recurrence of an infarct (stroke or silent cerebral infarct). We tested the hypothesis that the incidence of the recurrence of an infarct would be lower among children who underwent regular bloodtransfusion therapy than among those who received standard care.
METHODS
In this randomized, single-blind clinical trial, we randomly assigned children with sickle cell anemia to receive regular blood transfusions (transfusion group) or
standard care (observation group). Participants were between 5 and 15 years of age, with no history of stroke and with one or more silent cerebral infarcts on magnetic
resonance imaging and a neurologic examination showing no abnormalities corresponding to these lesions. The primary end point was the recurrence of an infarct, defined as a stroke or a new or enlarged silent cerebral infarct.
RESULTS
A total of 196 children (mean age, 10 years) were randomly assigned to the observation or transfusion group and were followed for a median of 3 years. In the transfusion group, 6 of 99 children (6%) had an end-point event (1 had a stroke, and 5 had new or enlarged silent cerebral infarcts). In the observation group, 14 of 97 children (14%) had an end-point event (7 had strokes, and 7 had new or enlarged silent cerebral infarcts). The incidence of the primary end point in the transfusion and
observation groups was 2.0 and 4.8 events, respectively, per 100 years at risk, corresponding to an incidence rate ratio of 0.41 (95% confidence interval, 0.12 to 0.99; P=0.04).
CONCLUSIONS
Regular blood-transfusion therapy significantly reduced the incidence of the recurrence of cerebral infarct in children with sickle cell anemia. (Funded by the National
Institute of Neurological Disorders and Stroke and others; Silent Cerebral Infarct Multi-Center Clinical Trial ClinicalTrials.gov number, NCT00072761, and
Current Controlled Trials number, ISRCTN52713285.
- …