1,003 research outputs found
The ALICE Membership system
With over 2000 active members from 174 institutes over 41 countries in the world, the ALICE experiment is one of the 4 large experiments at CERN. With such numerous interactions, the experiment management needs a way to record members’ participation history and their current status, such as employment, institutes, appointments, clusters and funding agencies, as well as to automatically generate the physics paper author list considering the experiment publication policy. The ALICE Glance Membership system handles all these needs and has been active for more than 8 years, helping the collaboration to organize their data, efficiently. In this document, we describe the new ALICE Glance Membership system, which is the result of breaking the monolithic code of the old version into two well-defined environments. The first is a REST API written in Object-Oriented PHP using the Slim framework to expose the data and Doctrine to access and manage an ORACLE database together with a Domain Driven Design approach to simplify the code architecture, dividing it in smaller self-contained contexts. The second is an HTTP Client written in the Vue.js framework to create a responsive and clean user interface. We will show how these changes have minimised maintenance efforts, lessened new features’ development time, reduced technical depths, facilitated newcomers onboarding and also simplified the user experience
The ALICE Service Work system
The "A Large Ion Collider Experiment" (ALICE), one of the four large experiments at the European Organization for Nuclear Research (CERN), is responsible for studying the physics of strongly interacting matter and the quark-gluon plasma. In order to ensure the full success of ALICE operation and data taking during the Large Hadron Collider Runs 3 and 4, a list of tasks identified as Service Work is established and maintained. This concerns detector maintenance, operation, calibration, quality control, data processing and outreach, as well as coordination and managerial roles in ALICE. The ALICE Glance Service Work system is a tool developed by a cooperation between the ALICE Collaboration and several universities that serves as the link between the user interaction and thousands of database entries. This paper describes the development process of this system and its functionalities, which range from planning the entire year of work for hundreds of tasks to individually assigning these tasks to members of the collaboration
MAREA PROJECT : MEDISEH (Mediterranean Sensitive Habitats) specific contract no 2 (SI2.600741)
Based on the following Terms of Reference (TOR) of the content of the European Commission DG MARE request Ares (2011)665688: “Compile information supporting the identification and location of nursery areas (juveniles in their first and, if appropriate, second year of life) and spawning aggregations. This information, which is to be collated and archived in formats adequate for GIS rendering, shall refer to all the demersal and small pelagic species in the Mediterranean included in Appendix VII of Council Regulation (EC) No 199/2008 as well as for the species subject to minimum size (Council Regulation (EC) No 1967/2006-Annex III). In addition, ecological characterisation of these areas, both in terms of biological community (assemblage) and habitats therein, must be provided.” The technical tender form of the Specific Contract 2 (MEDISEH) defined the following objectives: Review of historical and current data on the locations and the status of seagrass beds, coralligenous and mäerl beds in different GSAs (Geographical Sub-Areas amending amending the Resolution GFCM/31/2007/2) all over the Mediterranean basin. Transform the information into a digitilized format within the framework of a geodatabase Review and map of all existing specific Marine Protected Areas (MPAs) in the Mediterranean area as well as areas that are under any form of national or international regulation. Identify and map suitable areas for Posidonia, coralligenous and mäerl communities by developing habitat distribution models at different spatial scales. Review and map all existing information on historical and current data of nurseries and spawning grounds of certain small pelagic (i.e., Engraulis encrasicolus, Sardina pilchardus, Scomber spp., Trachurus spp.) and demersal species (i.e., Aristaeomorpha foliacea, Aristeus antennatus, Merluccius merluccius, Mullus barbatus, Mullus surmuletus, Nephrops norvegicus, Parapenaeus longirostris, Pagellus erythrinus, Galeus melastomus, Raja clavata, Illex coindetti, Eledone cirrosa) that are included in the Data Collection Framework for the Mediterranean and subjected to minimum landing size based on Council Regulation No 1967/2006-Annex II. Analyze existing survey data and apply spatial analysis techniques in order to identify locations that are more likely to be density hot spot areas or are being more suitable for fish nurseries and spawning grounds for Engraulis encrasicolus, Sardina pilchardus, Scomber spp., Trachurus trachurus, Aristaeomorpha foliacea, Aristeus antennatus, Merluccius merluccius, Mullus barbatus, Mullus surmuletus, Nephrops norvegicus, Parapenaeus longirostris, Pagellus erythrinus, Galeus melastomus, Raja clavata, Illex coindetti, Eledone cirrosa These areas will also be characterized from an environmental and ecological perspective upon data availability. Integrate and present the aforementioned information through a Web-based GIS viewer with an associated geo-referenced database that will operate as a consulting tool for spatial management and conservation planning. Following the revision of the knowledge base, to identify gaps and suggest future research priorities. In order to meet these objectives, an expert team was composed within the MAREA Consortium from scientists with established expertise in the different topics required, and working in different areas of the Mediterranean basin. The team formed to execute the project includes the main Institutes of EU countries in the Mediterranean, all having solid reputations in the fields covered. The participating Institutes/Entities operate in the Western, Central and Eastern parts of the Mediterranean basin, and this ensures familiarity with the geographical areas that are related to the specific tendering. Moreover, a large number of scientists outside of the MAREA Consortium collaborated on a volunteer basis with data and other input. Details on the list of experts and external collaborators can be found in each Work Package in the present report. For CV details, check the MAREA expert web-site http://www.mareaproject.net/.peer-reviewe
Seagrass meadows (Posidonia oceanica) distribution and trajectories of change.
Posidonia oceanica meadows are declining at alarming rates due to climate change and human activities. Although P. oceanica is considered the most important and well-studied seagrass species of the Mediterranean Sea, to date there has been a limited effort to combine all the spatial information available and provide a complete distribution of meadows across the basin. The aim of this work is to provide a fine-scale assessment of (i) the current and historical known distribution of P. oceanica, (ii) the total area of meadows and (iii) the magnitude of regressive phenomena in the last decades. The outcomes showed the current spatial distribution of P. oceanica, covering a known area of 1,224,707 ha, and highlighted the lack of relevant data in part of the basin (21,471 linear km of coastline). The estimated regression of meadows amounted to 34% in the last 50 years, showing that this generalised phenomenon had to be mainly ascribed to cumulative effects of multiple local stressors. Our results highlighted the importance of enforcing surveys to assess the status and prioritize areas where cost-effective schemes for threats reduction, capable of reversing present patterns of change and ensuring P. oceanica persistence at Mediterranean scale, could be implemented.This study was supported and financed by the Commission of the European Union (DG MARE) within the MAREA Framework contract (Call for tenders MARE/2009/05_Lot1) through the Specific Project MEDISEH (SI2.600741): Mediterranean Sensitive Habitats, that received 568.996 euro. The opinions expressed are those of the authors of the study only and do not represent the Commission’s official position. The European Commission is thankfully acknowledged.This is the final version of the article. It first appeared from NPG via http://dx.doi.org/10.1038/srep1250
Azimuthal anisotropy of charged jet production in root s(NN)=2.76 TeV Pb-Pb collisions
We present measurements of the azimuthal dependence of charged jet production in central and semi-central root s(NN) = 2.76 TeV Pb-Pb collisions with respect to the second harmonic event plane, quantified as nu(ch)(2) (jet). Jet finding is performed employing the anti-k(T) algorithm with a resolution parameter R = 0.2 using charged tracks from the ALICE tracking system. The contribution of the azimuthal anisotropy of the underlying event is taken into account event-by-event. The remaining (statistical) region-to-region fluctuations are removed on an ensemble basis by unfolding the jet spectra for different event plane orientations independently. Significant non-zero nu(ch)(2) (jet) is observed in semi-central collisions (30-50% centrality) for 20 <p(T)(ch) (jet) <90 GeV/c. The azimuthal dependence of the charged jet production is similar to the dependence observed for jets comprising both charged and neutral fragments, and compatible with measurements of the nu(2) of single charged particles at high p(T). Good agreement between the data and predictions from JEWEL, an event generator simulating parton shower evolution in the presence of a dense QCD medium, is found in semi-central collisions. (C) 2015 CERN for the benefit of the ALICE Collaboration. Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).Peer reviewe
Production of He-4 and (4) in Pb-Pb collisions at root(NN)-N-S=2.76 TeV at the LHC
Results on the production of He-4 and (4) nuclei in Pb-Pb collisions at root(NN)-N-S = 2.76 TeV in the rapidity range vertical bar y vertical bar <1, using the ALICE detector, are presented in this paper. The rapidity densities corresponding to 0-10% central events are found to be dN/dy4(He) = (0.8 +/- 0.4 (stat) +/- 0.3 (syst)) x 10(-6) and dN/dy4 = (1.1 +/- 0.4 (stat) +/- 0.2 (syst)) x 10(-6), respectively. This is in agreement with the statistical thermal model expectation assuming the same chemical freeze-out temperature (T-chem = 156 MeV) as for light hadrons. The measured ratio of (4)/He-4 is 1.4 +/- 0.8 (stat) +/- 0.5 (syst). (C) 2018 Published by Elsevier B.V.Peer reviewe
Forward-central two-particle correlations in p-Pb collisions at root s(NN)=5.02 TeV
Two-particle angular correlations between trigger particles in the forward pseudorapidity range (2.5 2GeV/c. (C) 2015 CERN for the benefit of the ALICE Collaboration. Published by Elsevier B. V.Peer reviewe
Event-shape engineering for inclusive spectra and elliptic flow in Pb-Pb collisions at root(NN)-N-S=2.76 TeV
Peer reviewe
Elliptic flow of muons from heavy-flavour hadron decays at forward rapidity in Pb-Pb collisions at root s(NN)=2.76TeV
The elliptic flow, v(2), of muons from heavy-flavour hadron decays at forward rapidity (2.5 <y <4) is measured in Pb-Pb collisions at root s(NN)= 2.76TeVwith the ALICE detector at the LHC. The scalar product, two- and four-particle Q cumulants and Lee-Yang zeros methods are used. The dependence of the v(2) of muons from heavy-flavour hadron decays on the collision centrality, in the range 0-40%, and on transverse momentum, p(T), is studied in the interval 3 <p(T)<10 GeV/c. A positive v(2) is observed with the scalar product and two-particle Q cumulants in semi-central collisions (10-20% and 20-40% centrality classes) for the p(T) interval from 3 to about 5GeV/c with a significance larger than 3 sigma, based on the combination of statistical and systematic uncertainties. The v(2) magnitude tends to decrease towards more central collisions and with increasing pT. It becomes compatible with zero in the interval 6 <p(T)<10 GeV/c. The results are compared to models describing the interaction of heavy quarks and open heavy-flavour hadrons with the high-density medium formed in high-energy heavy-ion collisions. (C) 2015 CERN for the benefit of the ALICE Collaboration. Published by Elsevier B.V.Peer reviewe
- …