35 research outputs found

    Extending classical multirate signal processing theory to graphs

    Get PDF
    A variety of different areas consider signals that are defined over graphs. Motivated by the advancements in graph signal processing, this study first reviews some of the recent results on the extension of classical multirate signal processing to graphs. In these results, graphs are allowed to have directed edges. The possibly non-symmetric adjacency matrix A is treated as the graph operator. These results investigate the fundamental concepts for multirate processing of graph signals such as noble identities, aliasing, and perfect reconstruction (PR). It is shown that unless the graph satisfies some conditions, these concepts cannot be extended to graph signals in a simple manner. A structure called M-Block cyclic structure is shown to be sufficient to generalize the results for bipartite graphs on two-channels to M-channel filter banks. Many classical multirate ideas can be extended to graphs due to the unique eigenstructure of M-Block cyclic graphs. For example, the PR condition for filter banks on these graphs is identical to PR in classical theory, which allows the use of well-known filter bank design techniques. In order to utilize these results, the adjacency matrix of an M-Block cyclic graph should be given in the correct permutation. In the final part, this study proposes a spectral technique to identify the hidden M-Block cyclic structure from a graph with noisy edges whose adjacency matrix is given under a random permutation. Numerical simulation results show that the technique can recover the underlying M-Block structure in the presence of random addition and deletion of the edges

    Sparse eigenvectors of graphs

    Get PDF
    In order to analyze signals defined over graphs, many concepts from the classical signal processing theory have been extended to the graph case. One of these concepts is the uncertainty principle, which studies the concentration of a signal on a graph and its graph Fourier basis (GFB). An eigenvector of a graph is the most localized signal in the GFB by definition, whereas it may not be localized in the vertex domain. However, if the eigenvector itself is sparse, then it is concentrated in both domains simultaneously. In this regard, this paper studies the necessary and sufficient conditions for the existence of 1, 2, and 3-sparse eigenvectors of the graph Laplacian. The provided conditions are purely algebraic and only use the adjacency information of the graph. Examples of both classical and real-world graphs with sparse eigenvectors are also presented

    Signals on Networks: Random Asynchronous and Multirate Processing, and Uncertainty Principles

    Get PDF
    The processing of signals defined on graphs has been of interest for many years, and finds applications in a diverse set of fields such as sensor networks, social and economic networks, and biological networks. In graph signal processing applications, signals are not defined as functions on a uniform time-domain grid but they are defined as vectors indexed by the vertices of a graph, where the underlying graph is assumed to model the irregular signal domain. Although analysis of such networked models is not new (it can be traced back to the consensus problem studied more than four decades ago), such models are studied recently from the view-point of signal processing, in which the analysis is based on the "graph operator" whose eigenvectors serve as a Fourier basis for the graph of interest. With the help of graph Fourier basis, a number of topics from classical signal processing (such as sampling, reconstruction, filtering, etc.) are extended to the case of graphs. The main contribution of this thesis is to provide new directions in the field of graph signal processing and provide further extensions of topics in classical signal processing. The first part of this thesis focuses on a random and asynchronous variant of "graph shift," i.e., localized communication between neighboring nodes. Since the dynamical behavior of randomized asynchronous updates is very different from standard graph shift (i.e., state-space models), this part of the thesis focuses on the convergence and stability behavior of such random asynchronous recursions. Although non-random variants of asynchronous state recursions (possibly with non-linear updates) are well-studied problems with early results dating back to the late 60's, this thesis considers the convergence (and stability) in the statistical mean-squared sense and presents the precise conditions for the stability by drawing parallels with switching systems. It is also shown that systems exhibit unexpected behavior under randomized asynchronicity: an unstable system (in the synchronous world) may be stabilized simply by the use of randomized asynchronicity. Moreover, randomized asynchronicity may result in a lower total computational complexity in certain parameter settings. The thesis presents applications of the random asynchronous model in the context of graph signal processing including an autonomous clustering of network of agents, and a node-asynchronous communication protocol that implements a given rational filter on the graph. The second part of the thesis focuses on extensions of the following topics in classical signal processing to the case of graph: multirate processing and filter banks, discrete uncertainty principles, and energy compaction filters for optimal filter design. The thesis also considers an application to the heat diffusion over networks. Multirate systems and filter banks find many applications in signal processing theory and implementations. Despite the possibility of extending 2-channel filter banks to bipartite graphs, this thesis shows that this relation cannot be generalized to M-channel systems on M-partite graphs. As a result, the extension of classical multirate theory to graphs is nontrivial, and such extensions cannot be obtained without certain mathematical restrictions on the graph. The thesis provides the necessary conditions on the graph such that fundamental building blocks of multirate processing remain valid in the graph domain. In particular, it is shown that when the underlying graph satisfies a condition called M-block cyclic property, classical multirate theory can be extended to the graphs. The uncertainty principle is an essential mathematical concept in science and engineering, and uncertainty principles generally state that a signal cannot have an arbitrarily "short" description in the original basis and in the Fourier basis simultaneously. Based on the fact that graph signal processing proposes two different bases (i.e., vertex and the graph Fourier domains) to represent graph signals, this thesis shows that the total number of nonzero elements of a graph signal and its representation in the graph Fourier domain is lower bounded by a quantity depending on the underlying graph. The thesis also presents the necessary and sufficient condition for the existence of 2-sparse and 3-sparse eigenvectors of a connected graph. When such eigenvectors exist, the uncertainty bound is very low, tight, and independent of the global structure of the graph. The thesis also considers the classical spectral concentration problem. In the context of polynomial graph filters, the problem reduces to the polynomial concentration problem studied more generally by Slepian in the 70's. The thesis studies the asymptotic behavior of the optimal solution in the case of narrow bandwidth. Different examples of graphs are also compared in order to show that the maximum energy compaction and the optimal filter depends heavily on the graph spectrum. In the last part, the thesis considers the estimation of the starting time of a heat diffusion process from its noisy measurements when there is a single point source located on a known vertex of a graph with unknown starting time. In particular, the Cramér-Rao lower bound for the estimation problem is derived, and it is shown that for graphs with higher connectivity the problem has a larger lower bound making the estimation problem more difficult.</p

    Extending Classical Multirate Signal Processing Theory to Graphs - Part I: Fundamentals

    Get PDF
    Signal processing on graphs finds applications in many areas. In recent years renewed interest on this topic was kindled by two groups of researchers. Narang and Ortega constructed two-channel filter banks on bipartitie graphs described by Laplacians. Sandryhaila and Moura developed the theory of linear systems, filtering, and frequency responses for the case of graphs with arbitrary adjacency matrices, and showed applications in signal compression, prediction, etc. Inspired by these contributions, this paper extends classical multirate signal processing ideas to graphs. The graphs are assumed to be general with a possibly non-symmetric and complex adjacency matrix. The paper revisits ideas such as noble identities, aliasing, and polyphase decompositions in graph multirate systems. Drawing such a parallel to classical systems allows one to design filter banks with polynomial filters, with lower complexity than arbitrary graph filters. It is shown that the extension of classical multirate theory to graphs is nontrivial, and requires certain mathematical restrictions on the graph. Thus, classical noble identities cannot be taken for granted. Similarly, one cannot claim that the so-called delay chain system is a perfect reconstruction system (as in classical filter banks). It will also be shown that M-partite extensions of the bipartite filter bank results will not work for M-channel filter banks, but a more restrictive condition called M-block cyclic property should be imposed. Such graphs are studied in detail. A detailed theory for M-channel filter banks is developed in a companion paper

    Extending Classical Multirate Signal Processing Theory to Graphs - Part I: Fundamentals

    Get PDF
    Signal processing on graphs finds applications in many areas. In recent years renewed interest on this topic was kindled by two groups of researchers. Narang and Ortega constructed two-channel filter banks on bipartitie graphs described by Laplacians. Sandryhaila and Moura developed the theory of linear systems, filtering, and frequency responses for the case of graphs with arbitrary adjacency matrices, and showed applications in signal compression, prediction, etc. Inspired by these contributions, this paper extends classical multirate signal processing ideas to graphs. The graphs are assumed to be general with a possibly non-symmetric and complex adjacency matrix. The paper revisits ideas such as noble identities, aliasing, and polyphase decompositions in graph multirate systems. Drawing such a parallel to classical systems allows one to design filter banks with polynomial filters, with lower complexity than arbitrary graph filters. It is shown that the extension of classical multirate theory to graphs is nontrivial, and requires certain mathematical restrictions on the graph. Thus, classical noble identities cannot be taken for granted. Similarly, one cannot claim that the so-called delay chain system is a perfect reconstruction system (as in classical filter banks). It will also be shown that M-partite extensions of the bipartite filter bank results will not work for M-channel filter banks, but a more restrictive condition called M-block cyclic property should be imposed. Such graphs are studied in detail. A detailed theory for M-channel filter banks is developed in a companion paper

    Extending classical multirate signal processing theory to graphs

    Get PDF
    A variety of different areas consider signals that are defined over graphs. Motivated by the advancements in graph signal processing, this study first reviews some of the recent results on the extension of classical multirate signal processing to graphs. In these results, graphs are allowed to have directed edges. The possibly non-symmetric adjacency matrix A is treated as the graph operator. These results investigate the fundamental concepts for multirate processing of graph signals such as noble identities, aliasing, and perfect reconstruction (PR). It is shown that unless the graph satisfies some conditions, these concepts cannot be extended to graph signals in a simple manner. A structure called M-Block cyclic structure is shown to be sufficient to generalize the results for bipartite graphs on two-channels to M-channel filter banks. Many classical multirate ideas can be extended to graphs due to the unique eigenstructure of M-Block cyclic graphs. For example, the PR condition for filter banks on these graphs is identical to PR in classical theory, which allows the use of well-known filter bank design techniques. In order to utilize these results, the adjacency matrix of an M-Block cyclic graph should be given in the correct permutation. In the final part, this study proposes a spectral technique to identify the hidden M-Block cyclic structure from a graph with noisy edges whose adjacency matrix is given under a random permutation. Numerical simulation results show that the technique can recover the underlying M-Block structure in the presence of random addition and deletion of the edges

    Randomized Asynchronous Recursions with a Sinusoidal Input

    No full text
    This study considers a randomized asynchronous form of the discrete time-invariant state-space models, in which only a random subset of the state variables is updated in each iteration. When the system has a single input in the form of a complex exponential, it is shown that the output signal still behaves like an exponential in a statistical sense. The study presents the necessary and sufficient condition that ensures the stability of a randomized asynchronous system, which does not necessarily require the stability of the state transition matrix
    corecore