35 research outputs found
Analysis of chlorophyll fluorescence reveals stage specific patterns of chloroplast-containing cells during Arabidopsis embryogenesis
http://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0716-97602010000100012&lng=es&nrm=isoThe basic body plan of a plant is established early in embryogenesis when cells differentiate, giving rise to the apical and basal regions of the embryo. Using chlorophyll fluorescence as a marker for chloroplasts, we have detected specific patterns of chloroplast-containing cells at specific stages of embryogenesis. Non-randomly distributed chloroplast-containing cells are seen as early as the globular stage of embryogenesis in Arabidopsis. In the heart stage of embryogenesis, chloroplast containing cells are detected in epidermal cells as well as a central region of the heart stage embryo, forming a triangular septum of chloroplast-containing cells that divides the embryo into three equal sectors. Torpedo stage embryos have chloroplast-containing epidermal cells and a central band of chloroplast-containing cells in the cortex layer, just below the shoot apical meristem. In the walking-stick stage of embryogenesis, chloroplasts are present in the epidermal, cortex and endodermal cells. The chloroplasts appear reduced or absent from the provascular and columella cells of walking-stick stage embryos. These results suggest that there is a tight regulation of plastid differentiation during embryogenesis that generates specific patterns of chloroplast-containing cells in specific cell layers at specific stages of embryogenesis
The PIN-FORMED (PIN) protein family of auxin transporters
The PIN-FORMED (PIN) proteins are secondary transporters acting in the efflux of the plant signal molecule auxin from cells. They are asymmetrically localized within cells and their polarity determines the directionality of intercellular auxin flow. PIN genes are found exclusively in the genomes of multicellular plants and play an important role in regulating asymmetric auxin distribution in multiple developmental processes, including embryogenesis, organogenesis, tissue differentiation and tropic responses. All PIN proteins have a similar structure with amino- and carboxy-terminal hydrophobic, membrane-spanning domains separated by a central hydrophilic domain. The structure of the hydrophobic domains is well conserved. The hydrophilic domain is more divergent and it determines eight groups within the protein family. The activity of PIN proteins is regulated at multiple levels, including transcription, protein stability, subcellular localization and transport activity. Different endogenous and environmental signals can modulate PIN activity and thus modulate auxin-distribution-dependent development. A large group of PIN proteins, including the most ancient members known from mosses, localize to the endoplasmic reticulum and they regulate the subcellular compartmentalization of auxin and thus auxin metabolism. Further work is needed to establish the physiological importance of this unexpected mode of auxin homeostasis regulation. Furthermore, the evolution of PIN-based transport, PIN protein structure and more detailed biochemical characterization of the transport function are important topics for further studies
Phosphatidylinositol 4-phosphate 5-kinases 1 and 2 are involved in the regulation of vacuole morphology during Arabidopsis thaliana pollen development
The pollen grains arise after meiosis of pollen mother cells within the anthers. A series of complex structural changes follows, generating mature pollen grains capable of performing the double fertilization of the female megasporophyte. Several signaling molecules, including hormones and lipids, have been involved in the regulation and appropriate control of pollen development. Phosphatidylinositol 4-phophate 5-kinases (PIP5K), which catalyze the biosynthesis of the phosphoinositide PtdIns(4,5)P2, are important for tip polar growth of root hairs and pollen tubes, embryo development, vegetative plant growth, and responses to the environment. Here, we report a role of PIP5Ks during microgametogenesis. PIP5K1 and PIP5K2 are expressed during early stages of pollen development and their transcriptional activity respond to auxin in pollen grains. Early male gametophytic lethality to certain grade was observed in both pip5k1-/- and pip5k2-/- single mutants. The number of pip5k mutant alleles is directly related to the frequency of aborted pollen grains suggesting the two genes are involved in the same function. Indeed PIP5K1 and PIP5K2 are functionally redundant since homozygous double mutants did not render viable pollen grains. The loss of function of PIP5K1 and PIP5K2results in defects in vacuole morphology in pollen at the later stages and epidermal root cells. Our results show that PIP5K1, PIP5K2 and phosphoinositide signaling are important cues for early developmental stages and vacuole formation during microgametogenesis
Cellular requirements for PIN polar cargo clustering in Arabidopsis thaliana
Cell and tissue polarization is fundamental for plant growth and morphogenesis. The polar, cellular localization of Arabidopsis PIN‐FORMED (PIN) proteins is crucial for their function in directional auxin transport. The clustering of PIN polar cargoes within the plasma membrane has been proposed to be important for the maintenance of their polar distribution. However, the more detailed features of PIN clusters and the cellular requirements of cargo clustering remain unclear.
Here, we characterized PIN clusters in detail by means of multiple advanced microscopy and quantification methods, such as 3D quantitative imaging or freeze‐fracture replica labeling. The size and aggregation types of PIN clusters were determined by electron microscopy at the nanometer level at different polar domains and at different developmental stages, revealing a strong preference for clustering at the polar domains.
Pharmacological and genetic studies revealed that PIN clusters depend on phosphoinositol pathways, cytoskeletal structures and specific cell‐wall components as well as connections between the cell wall and the plasma membrane.
This study identifies the role of different cellular processes and structures in polar cargo clustering and provides initial mechanistic insight into the maintenance of polarity in plants and other systems
Chemical genetic dissection of membrane trafficking
The plant endomembrane system is an extensively connected functional unit
for exchanging material between compartments. Secretory and endocytic
pathways allow dynamic trafficking of proteins, lipids, and other molecules,
regulating a myriad of biological processes. Chemical genetics—the use of
compounds to perturb biological processes in a fast, tunable, and transient
manner—provides elegant tools for investigating this system. Here, we review
how chemical genetics has helped to elucidate different aspects of membrane
trafficking. We discuss different strategies for uncovering the modes
of action of such compounds and their use in unraveling membrane trafficking
regulators. We also discuss how the bioactive chemicals that are
currently used as probes to interrogate endomembrane trafficking were discovered
and analyze the results regarding membrane trafficking and pathway
crosstalk. The integration of different expertises and the rational implementation
of chemical genetic strategies will improve the identification of molecular
mechanisms that drive intracellular trafficking and our understanding
of how trafficking interfaces with plant physiology and development
Cell polarity and endocytosis
Multicellular organisms have to generate asymmetries in cells and tissues to create different organs. Moreover, several responses to environmental factors are directional and hence require an equal directional response. In plants, such a challenge is accomplished by a multitude of polarly localized proteins that are involved in embryonic and post-embryonic development and dynamic polar responses to the environment. The phytohormone auxin and its polar cell to cell transport play a key role in several of those events providing a mean to coordinate cell and tissue polarities through regulating the polar localization of plasma membrane localized PIN auxin transporters. In this chapter, we discuss the crosstalk between cell trafficking and polarity as a way to integrate external as well as internal signals into asymmetry generation and directional responses in the context of PIN localizations and auxin-dependent processes
The use of drugs in the study of vacuole morphology and trafficking to the vacuole in arabidopsis thaliana
Chemical compounds are useful to perturb biological functions in the same way as classical genetic approaches take advantage of mutations at the DNA level to perturb gene function. The use of bioactive chemicals currently called chemical genetic is especially valuable for cell biology. Chemical genetic approaches allow perturbations of cellular processes post-germination in a given time window controlling the severity of the effect by modifying or modulating the dose and/or the period of the treatment. Additionally, compounds can be applied directly to different mutants and translational fluorescent reporters/marker lines, expanding the repertoire of experimental setups addressing cell biology research. In this chapter, we describe standard protocols to visualize vacuole morphology and trafficking to the vacuole and the use of bioactive compounds as a proxy to study these biological processes
Optimized whole-mount in situ immunolocalization for Arabidopsis thaliana root meristems and lateral root primordia
Immunolocalization is a valuable tool for cell biology research that allows to rapidly determine the localization and expression levels of endogenous proteins. In plants, whole-mount in situ immunolocalization remains a challenging method, especially in tissues protected by waxy layers and complex cell wall carbohydrates. Here, we present a robust method for whole-mount in situ immunolocalization in primary root meristems and lateral root primordia in Arabidopsis thaliana. For good epitope preservation, fixation is done in an alkaline paraformaldehyde/glutaraldehyde mixture. This fixative is suitable for detecting a wide range of proteins, including integral transmembrane proteins and proteins peripherally attached to the plasma membrane. From initiation until emergence from the primary root, lateral root primordia are surrounded by several layers of differentiated tissues with a complex cell wall composition that interferes with the efficient penetration of all buffers. Therefore, immunolocalization in early lateral root primordia requires a modified method, including a strong solvent treatment for removal of hydrophobic barriers and a specific cocktail of cell wall-degrading enzymes. The presented method allows for easy, reliable, and high-quality in situ detection of the subcellular localization of endogenous proteins in primary and lateral root meristems without the need of time-consuming crosses or making translational fusions to fluorescent proteins
Overexpression of the Auxin Receptor AFB3 in Arabidopsis Results in Salt Stress Resistance and the Modulation of NAC4 and SZF1
Soil salinity is a key problem for crop production worldwide. High salt concentration in soil negatively modulates plant growth and development. In roots, salinity affects the growth and development of both primary and lateral roots. The phytohormone auxin regulates various developmental processes during the plant’s life cycle, including several aspects of root architecture. Auxin signaling involves the perception by specialized receptors which module several regulatory pathways. Despite their redundancy, previous studies have shown that their functions can also be context-specific depending on tissue, developmental or environmental cues. Here we show that the over-expression of Auxin Signaling F-Box 3 receptor results in an increased resistance to salinity in terms of root architecture and germination. We also studied possible downstream signaling components to further characterize the role of auxin in response to salt stress. We identify the transcription factor SZF1 as a key component in auxin-dependent salt stress response through the regulation of NAC4. These results give lights of an auxin-dependent mechanism that leads to the modulation of root system architecture in response to salt identifying a hormonal cascade important for stress response