40 research outputs found

    Oxidation induced localized creep deformation in Zircaloy-2

    Get PDF
    Extensive plastic deformation in the metal underneath the oxide scale in autoclave tested Zircaloy-2 was studied using transmission electron microscopy (TEM). It was concluded that the plastic deformation is created by creep during oxidation, and is not caused by surface treatment, sample preparation or cooling from autoclave temperatures. Evidence of large strains was found in the form of dislocation tangles, dis- location patches and sub-grain formation, and also indications of twinning were found. The heavily deformed layer is around a few lm thick and no obvious difference could be seen between alloys with different strength or different oxide thickness

    An atom probe tomography study of the chemistry of radiation-induced dislocation loops in Zircaloy-2 exposed to boiling water reactor operation

    Get PDF
    This study is complementary to previous atom probe tomography (APT) studies of irradiation effects in the zirconium alloy Zircaloy-2. Using APT in voltage pulse mode, a difference in morphology was observed between clusters of Fe and Ni and clusters of Fe and Cr in Zircaloy-2 exposed to a high fast neutron fluence in a commercial boiling water reactor. The Fe–Ni clusters were disc-shaped with a diameter of 5–15 nm, whereas the Fe–Cr clusters were spheroidal with a diameter of approximately 5 nm. Both types of clusters appeared to be located at irradiation-induced <a>-type dislocation loops aligned in layers normal to the <c>-direction. The concentration of Fe was higher in the Fe–Cr clusters than in the Fe–Ni clusters. The dilute Fe–Ni clusters, which seem to be segregation of Fe and Ni inside the loops, had formed on all three families of first-order prismatic planes with some deviation from perfect <c>-axis alignment. The Fe–Cr clusters might be very small precipitates with a nucleation associated with the loops

    Nanoscale chemistry of Zircaloy-2 exposed to three and nine annual cycles of boiling water reactor operation — an atom probe tomography study

    Get PDF
    Atom probe tomography was used in this work to study the metal close to the metal/oxide interface in the zirconium alloy Zircaloy-2 exposed to three and nine annual cycles of operation in a commercial boiling water reactor. The two exposure times correspond to before and after the onset of acceleration in corrosion, hydrogen pickup, and growth. The alloying elements Sn, Fe, Cr, and Ni were observed to be redistributed after exposure. After both three and nine cycles, clusters containing Fe and Cr and typically of a spheroidal shape with an approximate diameter of 5 nm were observed to be located in layers presumed to be layers of -loops. On average, the cluster number density was slightly higher after nine cycles, with larger and more Cr-rich clusters. However, there were large grain-to-grain variations, which were larger than the differences between the two exposure times. Ni was only occasionally observed in the clusters. Sn was observed to be slightly enriched in the Fe–Cr clusters, but the Sn concentration was higher between than inside the layers of clusters. After nine cycles, clusters of Sn were detected in regions that were depleted of Fe and Cr. Enrichment of Sn, Fe, and Ni at features that appeared to be -component loops was observed after nine cycles, whereas no such features were observed after three cycles. Enrichment of Sn and Fe, and small amounts of Cr and Ni, was observed at grain boundaries after both exposure times. After three cycles, a partially dissolved second phase particle of Zr(Fe,Cr)2 type that contained about ten times more Cr than Fe was observed

    Redistribution of alloying elements in Zircaloy-2 after in-reactor exposure

    Get PDF
    An atom probe tomography study of the microstructure of a Zircaloy-2 material subjected to 9 annual cycles of BWR exposure has been conducted. Upon dissolution of secondary phase particles, Fe and Cr are seen to reprecipitate in large numbers of clusters and particles of 1-5 nm sizes throughout the Zr metal matrix. Fe and Sn were observed to segregate to ring-shaped features in the metal that are interpreted to be <c>-component vacancy loops. This implies that these two elements play a major role in the irradiation growth phenomenon in Zr alloys, which is believed to be caused by the formation of <c>-loops. Similarly to autoclave-corroded Zr alloys, the formation of a sub-oxide layer of approximate composition ZrO was observed. On the other hand, no oxygen saturated metal phase was detected underneath the oxide scale

    Microscopic characterization of pretransition oxide formed on Zr-Nb-Sn alloy under various Zn and dissolved hydrogen concentrations

    Get PDF
    Microstructure of oxide formed on Zr-Nb-Sn tube sample was intensively examined by scanning transmission electron microscopy after exposure to simulated primary water chemistry conditions of various concentrations of Zn (0 or 30 ppb) and dissolved hydrogen (H-2) (30 or 50 cc/kg) for various durations without applying desirable heat flux. Microstructural analysis indicated that there was no noticeable change in the microstructure of the oxide corresponding to water chemistry changes within the test duration of 100 days (pretransition stage) and no significant difference in the overall thickness of the oxide layer. Equiaxed grains with nano-size pores along the grain boundaries and microcracks were dominant near the water/oxide interface, regardless of water chemistry conditions. As the metal/oxide interface was approached, the number of pores tended to decrease. However, there was no significant effect of H-2 concentration between 30 cc/kg and 50 cc/kg on the corrosion of the oxide after free immersion in water at 360 degrees C. The adsorption of Zn on the cladding surface was observed by X-ray photoelectron spectroscopy and detected as ZnO on the outer oxide surface. From the perspective of OH - ion diffusion and porosity formation, the absence of noticeable effects was discussed further

    COVID-19 outbreaks among crew on commercial ships at the Port of Rotterdam, the Netherlands, 2020 to 2021

    Get PDF
    BackgroundDuring the COVID-19 pandemic, international shipping activity was disrupted as movement of people and goods was restricted. The Port of Rotterdam, the largest port in Europe, remained operational throughout.AimWe describe the burden of COVID-19 among crew on sea-going vessels at the port and recommend improvements in future infectious disease event notification and response at commercial ports.MethodsSuspected COVID-19 cases on sea-going vessels were notified to port authorities and public health (PH) authorities pre-arrival via the Maritime Declaration of Health. We linked data from port and PH information systems between 1 January 2020 and 31 July 2021, derived a notification rate (NR) of COVID-19 events per arrival, and an attack rate (AR) per vessel (confirmed cases). We compared AR by vessel type (workship/tanker/cargo/passenger), during wildtype-, alpha- and delta-dominant calendar periods.ResultsEighty-four COVID-19 events were notified on ships, involving 622 cases. The NR among 45,030 new arrivals was 173 per 100,000 impacting 1% of vessels. Events per week peaked in April 2021 and again in July 2021, when the AR was also highest. Half of all cases were notified on workships, events occurring earlier and more frequently than on other vessels.ConclusionNotification of COVID-19 events on ships occurred infrequently, although case under-ascertainment was likely. Pre-agreed protocols for data-sharing between stakeholders locally and across Europe would facilitate more efficient pandemic response. Public health access to specimens for sequencing and environmental sampling would give greater insight into viral spread on ships.</p

    The measurement of stress and phase fraction distributions in pre and post-transition Zircaloy oxides using nano-beam synchrotron X-ray diffraction

    Get PDF
    Zircaloy-4 oxide stress profiles and tetragonal:monoclinic oxide phase fraction distributions were studied using nano-beam transmission X-ray diffraction. Continuous stress relief and phase transformation during the first cycle of oxide growth was observed. The in-plane monoclinic stress was shown to relax strongly up to each transition, whereas in-plane tetragonal stress-relief (near the metal-oxide interface) was only observed post transition. The research demonstrates that plasticity in the metal and the development of a band of in-plane cracking both relax the monoclinic in-plane stress.The observations are consistent with a model of transition in which in-plane cracking becomes interlinked prior to transition. These cracks, combined with the development of cracks with a through-thickness component (driven primarily by plasticity in the metal) and/or a porous network of fine cracks (associated with phase transformation), form a percolation path through the oxide layer. The oxidising species can then percolate from the oxide surface to the metal/oxide interface, at which stage transition then ensues

    Microstructure Investigation of the Oxidation Process in Zircaloy-2 - The Effect of Intermetallic Particle Size

    No full text
    Zirconium alloys are widely used in nuclear reactors as fuel cladding tubes because of their low thermal neutron capture cross-section, good corrosion properties and satisfactory mechanical properties. With an improved corrosion resistance the alloys could be used for much longer times in the reactors, increasing fuel burn-up and decreasing the amount of radioactive waste. Therefore it is of great importance to try to understand the mechanisms of the oxidation process in these alloys.In this study the oxidation behavior in steam autoclave of Zircaloy-2, an alloy used primarily in boiling water reactors, is studied. Special emphasis is put on the role of the intermetallic second phase particles (SPPs) containing iron, chromium and nickel and with a typical size of 50 nm. The main method for investigations has been transmission electron microscopy in combination with energy dispersive X-ray spectroscopy. Also atom probe tomography and spectrophotometry have been used. Focus has been on the microstructure of the oxide and the metal/oxide interface zone. It was found that the SPPs oxidize slower than the surrounding metal, and that the absent volume increase leads to void and crack formation as the SPPs become embedded in the oxide. On SPP oxidation, iron diffuses out of the particle into the surrounding oxide.The metal/oxide interface was found to undulate on a micrometer scale. This undulation gives rise to large stresses perpendicular to the metal/oxide interface. In the oxide, above wave crests, lateral cracks are formed, and it is shown that un-oxidized SPPs embedded in the oxide act as nucleation sites for these cracks. Therefore, a material with many small SPPs has more lateral cracks than a material with few large SPPs.Adjacent to the oxide often a sub-oxide layer (~ZrO) is found, with varying thickness also in the same specimen. One sub-oxide layer with an average oxygen content of ~55 at. % was found to consist of fingers with ~60 at. % oxygen with a diameter of 5 nm and a length of 50 nm, penetrating into regions of ~50 at. % oxygen. From the oxide, oxygen diffuses into the metal and it was found that the width of the oxygen diffusion profile varies, with wider profiles underneath delayed parts of the interface. An oxygen enriched phase with ~30 at. % oxygen was found in some of the specimens. Evidence of extensive plastic deformation in the metal underneath the oxide scale was found in the form of twinning, dislocation tangles and patches, cell formation and sub-grain formation. The heavily deformed layer is a few \ub5m thick and no obvious difference could be seen underneath different oxide thicknesses or between alloys with different strength. The black oxide color of zirconium alloys has been studied using spectrophotometry. The conclusion is that the reason for the black appearance of oxidized zirconium alloys is the excitation of localized surface plasmon resonances in the metallic SPPs embedded in the oxide layer
    corecore