56 research outputs found

    Fatigability and Recovery of Arm Muscles with Advanced Age for Dynamic and Isometric Contractions

    Get PDF
    This study determined whether age-related mechanisms can increase fatigue of arm muscles during maximal velocity dynamic contractions, as it occurs in the lower limb. We compared elbow flexor fatigue of young (n = 10, 20.8 ± 2.7 years) and old men (n = 16, 73.8 ± 6.1 years) during and in recovery from a dynamic and an isometric postural fatiguing task. Each task was maintained until failure while supporting a load equivalent to 20% of maximal voluntary isometric contraction (MVIC) torque. Transcranial magnetic stimulation (TMS) was used to assess supraspinal fatigue (superimposed twitch, SIT) and muscle relaxation. Time to failure was longer for the old men than for the young men for the isometric task (9.5 ± 3.1 vs. 17.2 ± 7.0 min, P = 0.01) but similar for the dynamic task (6.3 ± 2.4 min vs. 6.0 ± 2.0 min, P = 0.73). Initial peak rate of relaxation was slower for the old men than for the young men, and was associated with a longer time to failure for both tasks (P \u3c 0.05). Low initial power during elbow flexion was associated with the greatest difference (reduction) in time to failure between the isometric task and the dynamic task (r = − 0.54, P = 0.015). SIT declined after both fatigue tasks similarly with age, although the recovery of SIT was associated with MVIC recovery for the old (both sessions) but not for the young men. Biceps brachii and brachioradialis EMG activity (% MVIC) of the old men were greater than that of the young men during the dynamic fatiguing task (P \u3c 0.05), but were similar during the isometric task. Muscular mechanisms and greater relative muscle activity (EMG activity) explain the greater fatigue during the dynamic task for the old men compared with the young men in the elbow flexor muscles. Recovery of MVC torque however relies more on the recovery of supraspinal fatigue among the old men than among the young men

    Sex Differences with Aging in the Fatigability of Dynamic Contractions

    Get PDF
    This study determined the sex difference with aging in fatigability of the elbow flexor muscles during a dynamic fatiguing task, and explored the associated mechanisms. We compared fatigability of the elbow flexor muscles in 18 young (20.2 ± 1 years: 9 men) and 36 old adults (73.5 ± 1 years: 16 men) during and in recovery from repeated dynamic contractions (~ 60°/s) with a load equivalent to 20% of maximal voluntary isometric contraction (MVIC) torque until failure. Transcranial magnetic stimulation (TMS) was used to assess supraspinal fatigue (an increase in the superimposed twitch, SIT) and the peak rate of muscle relaxation. Time to failure was briefer for the men than the women (6.1 ± 2.1 vs. 9.7 ± 5.5 min, respectively; P = 0.02) with no difference between young and old adults (7.2 ± 2.9 vs. 8.4 ± 5.2 min, respectively, P = 0.45) and no interaction (P \u3e 0.05). The relative decline in peak relaxation rate with fatigability was similar for young and old adults (P = 0.11), but greater for men than women (P = 0.046). Supraspinal fatigue increased for all groups and was associated with the time to failure (P \u3c 0.05). Regression analysis however, indicated that the time to failure was best predicted by the peak relaxation rate (baseline values and slowing with fatigability) (r2 = 0.55). Rate-limiting contractile mechanisms (e.g. excitation–contraction coupling) were responsible for the increased fatigability of the elbow flexors of men compared with women for a dynamic fatiguing task of slow angular velocity, and this sex difference was maintained with aging. The age difference in fatigability for the dynamic task was diminished for both sexes relative to what is typically observed with isometric fatiguing contractions

    Supraspinal Fatigue Impedes Recovery From a Low-Intensity Sustained Contraction in Old Adults

    Get PDF
    This study determined the contribution of supraspinal fatigue and contractile properties to the age difference in neuromuscular fatigue during and recovery from a low-intensity sustained contraction. Cortical stimulation was used to evoke measures of voluntary activation and muscle relaxation during and after a contraction sustained at 20% of maximal voluntary contraction (MVC) until task failure with elbow flexor muscles in 14 young adults (20.9 ± 3.6 yr, 7 men) and 14 old adults (71.6 ± 5.4 yr, 7 men). Old adults exhibited a longer time to task failure than the young adults (23.8 ± 9.0 vs. 11.5 ± 3.9 min, respectively, P \u3c 0.001). The time to failure was associated with initial peak rates of relaxation of muscle fibers and pressor response (P \u3c 0.05). Increments in torque (superimposed twitch; SIT) generated by transcranial magnetic stimulation (TMS) during brief MVCs, increased during the fatiguing contraction (P \u3c 0.001) and then decreased during recovery (P = 0.02). The increase in the SIT was greater for the old adults than the young adults during the fatiguing contraction and recovery (P \u3c 0.05). Recovery of MVC torque was less for old than young adults at 10 min post-fatiguing contraction (75.1 ± 8.7 vs. 83.6 ± 7.8% of control MVC, respectively, P = 0.01) and was associated with the recovery of the SIT (r = −0.59, r2 = 0.35, P \u3c 0.001). Motor evoked potential (MEP) amplitude and the silent period elicited during the fatiguing contraction increased less for old adults than young adults (P \u3c 0.05). The greater fatigue resistance with age during a low-intensity sustained contraction was attributable to mechanisms located within the muscle. Recovery of maximal strength after the low-intensity fatiguing contraction however, was impeded more for old adults than young because of greater supraspinal fatigue. Recovery of strength could be an important variable to consider in exercise prescription of old populations

    Brain Areas Associated with Force Steadiness and Intensity During Isometric Ankle Dorsiflexion in Men and Women

    Get PDF
    Although maintenance of steady contractions is required for many daily tasks, there is little understanding of brain areas that modulate lower limb force accuracy. Functional magnetic resonance imaging was used to determine brain areas associated with steadiness and force during static (isometric) lower limb target-matching contractions at low and high intensities. Fourteen young adults (6 men and 8 women; 27.1 ± 9.1 years) performed three sets of 16-s isometric contractions with the ankle dorsiflexor muscles at 10, 30, 50, and 70 % of maximal voluntary contraction (MVC). Percent signal changes (PSCs, %) of the blood oxygenation level-dependent response were extracted for each contraction using region of interest analysis. Mean PSC increased with contraction intensity in the contralateral primary motor area (M1), supplementary motor area, putamen, pallidum cingulate cortex, and ipsilateral cerebellum (p \u3c 0.05). The amplitude of force fluctuations (standard deviation, SD) increased from 10 to 70 % MVC but relative to the mean force (coefficient of variation, CV %) was greatest at 10 % MVC. The CV of force was associated with PSC in the ipsilateral parietal lobule (r = −0.28), putamen (r = −0.29), insula (r = −0.33), and contralateral superior frontal gyrus (r = −0.33, p \u3c 0.05). There were minimal sex differences in brain activation across the isometric motor tasks indicating men and women were similarly motivated and able to activate cortical motor centers during static tasks. Control of steady lower limb contractions involves cortical and subcortical motor areas in both men and women and provides insight into key areas for potential cortical plasticity with impaired or enhanced leg function

    “Musical Exercise” for people with visual impairments: A preliminary study with the blindfolded

    Get PDF
    Performing independent physical exercise is critical to maintain one\u27s good health, but it is specifically hard for people with visual impairments. To address this problem, we have developed a Musical Exercise platform for people with visual impairments so that they can perform exercise in a good form consistently. We designed six different conditions, including blindfolded or visual without audio conditions, and blindfolded or visual with two different types of audio feedback (continuous vs. discrete) conditions. Eighteen sighted participants participated in the experiment, by doing two exercises - squat and wall sit with all six conditions. The results show that Musical Exercise is a usable exercise assistance system without any adverse effect on exercise completion time or perceived workload. Also, the results show that with a specific sound design (i.e., discrete), participants in the blindfolded condition can do exercise as consistently as participants in the non-blindfolded condition. This implies that not all sounds equally work and thus, care is required to refine auditory displays. Potentials and limitations of Musical Exercise and future works are discussed with the results

    Sex Differences in Mechanisms of Recovery after Isometric and Dynamic Fatiguing Tasks

    Get PDF
    Purpose The purpose of this study was to determine whether supraspinal mechanisms contribute to the sex difference in fatigability during and recovery from a dynamic and isometric fatiguing task with the knee extensors. Methods: Transcranial magnetic stimulation and electrical stimulation were used to determine voluntary activation and contractile properties of the knee extensors in 14 men and 17 women (20.8 ± 1.9 yr) after a 1) 60-s sustained, maximal voluntary isometric contraction (MVIC), and 2) dynamic fatiguing task involving 120 maximal voluntary concentric contractions with a 20% MVIC load. Results: There were no differences between men and women in the reduction of maximal torque during the sustained MVIC (54.4% ± 18.9% vs 55.9% ± 11.2%, P = 0.49) or in the decrease in power during the dynamic fatiguing task (14.7% ± 20.1% vs 14.2% ± 18.5%, P = 0.92). However, MVIC torque recovered more quickly for women than men after the sustained MVIC and the dynamic task (P \u3c 0.05). The transcranial magnetic stimulation–elicited superimposed twitch was larger for men than for women during the sustained MVIC and in recovery (immediately post, R0.1: 4.7% ± 3.3% vs 2.4% ± 1.9% MVIC; P = 0.02), with no sex difference after the dynamic task (P = 0.35). The reduction in resting twitch amplitude was larger for men than for women immediately after the dynamic task (37% ± 22% vs 23% ± 18%; P = 0.016) with no sex difference after the sustained MVIC (64% ± 16% vs 67% ± 11%; P = 0.46). Conclusions: Supraspinal fatigue contributed to fatigability of the knee extensors more for men than for women after a maximal isometric task, whereas contractile mechanisms explained the sex difference in torque recovery after the fast-velocity dynamic task. The mechanisms for the sex difference in fatigability are task dependent

    Supraspinal Fatigue Is Similar in Men and Women for a Low-Force Fatiguing Contraction

    Get PDF
    Purpose: This study determined the contribution of supraspinal fatigue to the sex difference in neuromuscular fatigue for a low-intensity fatiguing contraction. Because women have greater motor responses to arousal than men, we also examined whether cortical and motor nerve stimulation, techniques used to quantify central fatigue, would alter the sex difference in muscle fatigue. Methods: In study 1, cortical stimulation was elicited during maximal voluntary contractions (MVC) before and after a submaximal isometric contraction at 20% MVC with the elbow flexor muscles in 29 young adults (20 ± 2.6 yr, 14 men). In study 2, 10 men and 10 women (19.1 ± 2.9 yr) performed a fatiguing contraction in the presence and absence of cortical and motor nerve stimulation. Results: Study 1: Men had a briefer time to task failure than women (P = 0.009). Voluntary activation was reduced after the fatiguing contraction (P \u3c 0.001) similarly for men and women. Motor-evoked potential area and the EMG silent period increased similarly with fatigue for both sexes. Peak relaxation rates, however, were greater for men than women and were associated with time to task failure (P \u3c 0.05). Force fluctuations, RPE, HR, and mean arterial pressure increased at a greater rate for men than for women during the fatiguing contraction (P \u3c 0.05). Study 2: Time to task failure, force fluctuations, and all other physiological variables assessed were similar for the control session and stimulation session (P\u3e 0.05) for both men and women. Conclusions: Supraspinal fatigue was similar for men and women after the low-force fatiguing contraction, and the sex difference in muscle fatigue was associated with peripheral mechanisms. Furthermore, supraspinal fatigue can be quantified in both men and women without influencing motor performance

    Age and Sex Differences in Steadiness of Elbow Flexor Muscles with Imposed Cognitive Demand

    Get PDF
    Purpose: These studies determined (1) age and sex-related differences in steadiness of isometric contractions when high cognitive demand was imposed across a range of forces with the elbow flexor muscles (study 1) and, (2) sex differences in steadiness among older adults when low cognitive demand was imposed (study 2). Methods: 36 young adults (18–25 years; 18 women) and 30 older adults (60–82 years; 17 women) performed isometric contractions at 5%, 30% and 40% of maximum voluntary contraction (MVC). Study 1 involved a high-cognitive demand session (serial subtractions by 13 during the contraction) and a control session (no mental math). Study 2 (older adults only) involved a low-cognitive demand session (subtracting by 1s). Results: Older individuals exhibited greater increases in force fluctuations (coefficient of variation of force, CV) with high cognitive demand than young adults, with the largest age difference at 5% MVC (P = 0.01). Older adults had greater agonist EMG activity with high-cognitive demand and women had greater coactivation than men (PP = 0.03). Conclusion: Older adults had reduced steadiness and increased muscle activation when high cognitive demand was imposed while low cognitive demand induced increased force fluctuations in older women but not older men. These findings have implications for daily and work-related tasks that involve cognitive demand performed simultaneously during submaximal isometric contractions in an aging workforce

    Smart exercise application to improve leg function and short-term memory through game- like lunge exercises: development and evaluation

    Get PDF
    The purpose of this study was to evaluate the functionality, accuracy, and usability of a novel smart exercise application (SEA). The functionality such as counting lunges, providing task-related auditory feedback, and testing short-term memory was examined while thirteen young adults (six men, age 25.4 ± 8.3 years) performed the lunge exercise with the SEA. The accuracy of logged motion data including angles and accelerations were also tested. Another twenty-five participants (11 men, age 23.2 ± 5.7 years) evaluated the usability of the SEA interest, motivation, convenience, and strength/cognitive benefit via a questionnaire. The SEA assessed the lunge motion correctly, provided auditory feedback, and tested users’ short-term memory as required. High correlations (r = 0.90 to 0.99) with low RMSE (4.85 ̊ for direction angle, 0.13 to 0.22 m/ s2 for acceleration) were observed between the sensor output and the reference output. Bland-Altman plot also showed a low discrepancy between each of the two measures. Most participants positively answered all questions about interest (60%), motivation (40%), convenience (80%), strength benefits (92%), and cognitive benefits (88%) of the SEA. The SEA demonstrated accurate kinematic assessment of accelerations and directions, assessed the lunge motion correctly, and created the appropriate auditory feedback on the short- term memory task. The high rate of positive responses suggested the potential of the application in future use
    corecore