1,937 research outputs found
Symmetry breaking in commensurate graphene rotational stacking; a comparison of theory and experiment
Graphene stacked in a Bernal configuration (60 degrees relative rotations
between sheets) differs electronically from isolated graphene due to the broken
symmetry introduced by interlayer bonds forming between only one of the two
graphene unit cell atoms. A variety of experiments have shown that non-Bernal
rotations restore this broken symmetry; consequently, these stacking varieties
have been the subject of intensive theoretical interest. Most theories predict
substantial changes in the band structure ranging from the development of a Van
Hove singularity and an angle dependent electron localization that causes the
Fermi velocity to go to zero as the relative rotation angle between sheets goes
to zero. In this work we show by direct measurement that non-Bernal rotations
preserve the graphene symmetry with only a small perturbation due to weak
effective interlayer coupling. We detect neither a Van Hove singularity nor any
significant change in the Fermi velocity. These results suggest significant
problems in our current theoretical understanding of the origins of the band
structure of this material.Comment: 7 pages, 6 figures, submitted to PR
New electronic orderings observed in cobaltates under the influence of misfit periodicities
We study with ARPES the electronic structure of CoO2 slabs, stacked with
rock-salt (RS) layers exhibiting a different (misfit) periodicity. Fermi
Surfaces (FS) in phases with different doping and/or periodicities reveal the
influence of the RS potential on the electronic structure. We show that these
RS potentials are well ordered, even in incommensurate phases, where STM images
reveal broad stripes with width as large as 80\AA. The anomalous evolution of
the FS area at low dopings is consistent with the localization of a fraction of
the electrons. We propose that this is a new form of electronic ordering,
induced by the potential of the stacked layers (RS or Na in NaxCoO2) when the
FS becomes smaller than the Brillouin Zone of the stacked structure
Silicon intercalation into the graphene-SiC interface
In this work we use LEEM, XPEEM and XPS to study how the excess Si at the
graphene-vacuum interface reorders itself at high temperatures. We show that
silicon deposited at room temperature onto multilayer graphene films grown on
the SiC(000[`1]) rapidly diffuses to the graphene-SiC interface when heated to
temperatures above 1020. In a sequence of depositions, we have been able to
intercalate ~ 6 ML of Si into the graphene-SiC interface.Comment: 6 pages, 8 figures, submitted to PR
A wide band gap metal-semiconductor-metal nanostructure made entirely from graphene
A blueprint for producing scalable digital graphene electronics has remained
elusive. Current methods to produce semiconducting-metallic graphene networks
all suffer from either stringent lithographic demands that prevent
reproducibility, process-induced disorder in the graphene, or scalability
issues. Using angle resolved photoemission, we have discovered a unique one
dimensional metallic-semiconducting-metallic junction made entirely from
graphene, and produced without chemical functionalization or finite size
patterning. The junction is produced by taking advantage of the inherent,
atomically ordered, substrate-graphene interaction when it is grown on SiC, in
this case when graphene is forced to grow over patterned SiC steps. This
scalable bottomup approach allows us to produce a semiconducting graphene strip
whose width is precisely defined within a few graphene lattice constants, a
level of precision entirely outside modern lithographic limits. The
architecture demonstrated in this work is so robust that variations in the
average electronic band structure of thousands of these patterned ribbons have
little variation over length scales tens of microns long. The semiconducting
graphene has a topologically defined few nanometer wide region with an energy
gap greater than 0.5 eV in an otherwise continuous metallic graphene sheet.
This work demonstrates how the graphene-substrate interaction can be used as a
powerful tool to scalably modify graphene's electronic structure and opens a
new direction in graphene electronics research.Comment: 11 pages, 7 figure
First direct observation of a nearly ideal graphene band structure
Angle-resolved photoemission and X-ray diffraction experiments show that
multilayer epitaxial graphene grown on the SiC(000-1) surface is a new form of
carbon that is composed of effectively isolated graphene sheets. The unique
rotational stacking of these films cause adjacent graphene layers to
electronically decouple leading to a set of nearly independent linearly
dispersing bands (Dirac cones) at the graphene K-point. Each cone corresponds
to an individual macro-scale graphene sheet in a multilayer stack where
AB-stacked sheets can be considered as low density faults.Comment: 5 pages, 4 figure
A beam-beam monitoring detector for the MPD experiment at NICA
The Multi-Purpose Detector (MPD) is to be installed at the Nuclotron Ion
Collider fAcility (NICA) of the Joint Institute for Nuclear Research (JINR).
Its main goal is to study the phase diagram of the strongly interacting matter
produced in heavy-ion collisions. These studies, while providing insight into
the physics of heavy-ion collisions, are relevant for improving our
understanding of the evolution of the early Universe and the formation of
neutron stars. In order to extend the MPD trigger capabilities, we propose to
include a high granularity beam-beam monitoring detector (BE-BE) to provide a
level-0 trigger signal with an expected time resolution of 30 ps. This new
detector will improve the determination of the reaction plane by the MPD
experiment, a key measurement for flow studies that provides physics insight
into the early stages of the reaction. In this work, we use simulated Au+Au
collisions at NICA energies to show the potential of such a detector to
determine the event plane resolution, providing further redundancy to the
detectors originally considered for this purpose namely, the Fast Forward
Detector (FFD) and the Hadron Calorimeter (HCAL). We also show our results for
the time resolution studies of two prototype cells carried out at the T10 beam
line at the CERN PS complex.Comment: 16 pages, 12 figures. Updated to published version with added
comments and correction
- …