1,914 research outputs found
How different Fermi surface maps emerge in photoemission from Bi2212
We report angle-resolved photoemission spectra (ARPES) from the Fermi energy
() over a large area of the () plane using 21.2 eV and 32 eV
photons in two distinct polarizations from an optimally doped single crystal of
BiSrCaCuO (Bi2212), together with extensive
first-principles simulations of the ARPES intensities. The results display a
wide-ranging level of accord between theory and experiment and clarify how
myriad Fermi surface (FS) maps emerge in ARPES under various experimental
conditions. The energy and polarization dependences of the ARPES matrix element
help disentangle primary contributions to the spectrum due to the pristine
lattice from those arising from modulations of the underlying tetragonal
symmetry and provide a route for separating closely placed FS sheets in low
dimensional materials.Comment: submitted to PR
A beam-beam monitoring detector for the MPD experiment at NICA
The Multi-Purpose Detector (MPD) is to be installed at the Nuclotron Ion
Collider fAcility (NICA) of the Joint Institute for Nuclear Research (JINR).
Its main goal is to study the phase diagram of the strongly interacting matter
produced in heavy-ion collisions. These studies, while providing insight into
the physics of heavy-ion collisions, are relevant for improving our
understanding of the evolution of the early Universe and the formation of
neutron stars. In order to extend the MPD trigger capabilities, we propose to
include a high granularity beam-beam monitoring detector (BE-BE) to provide a
level-0 trigger signal with an expected time resolution of 30 ps. This new
detector will improve the determination of the reaction plane by the MPD
experiment, a key measurement for flow studies that provides physics insight
into the early stages of the reaction. In this work, we use simulated Au+Au
collisions at NICA energies to show the potential of such a detector to
determine the event plane resolution, providing further redundancy to the
detectors originally considered for this purpose namely, the Fast Forward
Detector (FFD) and the Hadron Calorimeter (HCAL). We also show our results for
the time resolution studies of two prototype cells carried out at the T10 beam
line at the CERN PS complex.Comment: 16 pages, 12 figures. Updated to published version with added
comments and correction
Solidification of small para-H2 clusters at zero temperature
We have determined the ground-state energies of para-H clusters at zero
temperature using the diffusion Monte Carlo method. The liquid or solid
character of each cluster is investigated by restricting the phase through the
use of proper importance sampling. Our results show inhomogeneous
crystallization of clusters, with alternating behavior between liquid and solid
phases up to N=55. From there on, all clusters are solid. The ground-state
energies in the range N=13--75 are established and the stable phase of each
cluster is determined. In spite of the small differences observed between the
energy of liquid and solid clusters, the corresponding density profiles are
significantly different, feature that can help to solve ambiguities in the
determination of the specific phase of H clusters.Comment: 17 pages, accepted for publication in J. Phys. Chem.
ACORDE a Cosmic Ray Detector for ALICE
ACORDE is one of the ALICE detectors, presently under construction at CERN.
It consists of an array of plastic scintillator counters placed on the three
upper faces of the ALICE magnet. It will act as a cosmic ray trigger, and,
together with other ALICE sub-detectors, will provide precise information on
cosmic rays with primary energies around eV. Here we
describe the design review of ACORDE along with the present status and
integration into ALICE.Comment: 2 pages, 2 figures. Conference Proceeding of the X Pisa Meeting on
Advanced Detectors, to be published in a special issue of Nuclear Instruments
and Method
Characterization of Structures of Equivalent Tissue With a Pixel Detector
Research using hybrid pixel detectors in medical physics is on the rise. Timepix detectors have arrays of 256 × 256 pixels with a resolution of 55 μm. Here, and by using Timepix counts instead of Hounsfield units, we present a calibration curve of a Timepix detector analog to those used for CT calibration. Experimentation consisted of the characterization of electron density in 10 different kinds of tissue equivalent samples from a CIRS 062M phantom (lung, 3 kinds of bones, fat, breast, muscle, water and air). Radiation of the detector was performed using an orthodontic X-ray machine at 70 KeV and .06 second of tube current with a purpose-built aluminum collimator. Data acquisition was performed at 1 frame per second and taking 3 frames per phantom. We were able to find a curve whose behavior was similar to others already published. This will lead to the verification of the usage of Timepix for identification of different tissues in an organ
The Habitat Types of Freshwater Prawns (Palaemonidae: <em>Macrobrachium</em>) with Abbreviated Larval Development in Mesoamerica (Mexico, Guatemala and Belize)
The freshwater prawns of genus Macrobrachium with abbreviated larval development have been reported from a diversity of freshwater habitats (caves, springs and primary streams from so-long basins). Here we analysed 360 sites around the Mesoamerican region (Mexico, Guatemala and Belize). At each site, we measured temperature, salinity oxygen dissolved, pH, altitude and water flow velocity values. We documented the riparian vegetation and occurrence and abundance of Macrobrachium populations. All these values were analysed by multi-dimensional scaling and principal components analysis in order to identify key features of the environmental data that determine the habitat types and habitat diversity. The results show that there are Macrobrachium populations in 70 sites inhabiting two main habitats: Lotic and Lentic; and each one have fours subhabitat types. All are defined by altitude range and water velocity that involve the temperature and oxygen variables. In some specific areas, the karstic values on salinity and pH defined some groups. Within the lentic habitats, we identified the following subhabitats: (1) temperate streams, (2) neutral streams, (3) high dissolved oxygen, (4) multifactorial; and for lotic habitats, we identified: (5) water high carbonate, (6) moderate dissolved oxygen, (7) low dissolved oxygen, and (8) high altitude streams. All these subhabitats are located on the drainage basin to the Atlantic Sea, including places from 50 to 850 meters above sea levels and have specifically ranges from temperature, water velocity, pH and salinity for some cases. Also, the geological analysis from the basins where the Macrobrachium inhabit is located showed that the geological faults align with these habitat subdivisions. In this chapter, we discuss the environmental heterogeneity, morphological plasticity and their relationship to physiographic regions across the species ranges
Phosphodiesterase type 4 anchoring regulates cAMP signaling to Popeye domain-containing proteins.
Cyclic AMP is a ubiquitous second messenger used to transduce intracellular signals from a variety of Gs-coupled receptors. Compartmentalisation of protein intermediates within the cAMP signaling pathway underpins receptor-specific responses. The cAMP effector proteins protein-kinase A and EPAC are found in complexes that also contain phosphodiesterases whose presence ensures a coordinated cellular response to receptor activation events. Popeye domain containing (POPDC) proteins are the most recent class of cAMP effectors to be identified and have crucial roles in cardiac pacemaking and conduction. We report the first observation that POPDC proteins exist in complexes with members of the PDE4 family in cardiac myocytes. We show that POPDC1 preferentially binds the PDE4A sub-family via a specificity motif in the PDE4 UCR1 region and that PDE4s bind to the Popeye domain of POPDC1 in a region known to be susceptible to a mutation that causes human disease. Using a cell-permeable disruptor peptide that displaces the POPDC1-PDE4 complex we show that PDE4 activity localized to POPDC1 modulates cycle length of spontaneous Ca2+ transients firing in intact mouse sinoatrial nodes
Nanofiber fabrication in a temperature and humidity controlled environment for improved fibre consistency
To fabricate nanofibers with reproducible characteristics, an important demand for many applications, the effect of controlled atmospheric conditions on resulting electrospun cellulose acetate (CA) nanofibers was evaluated for temperature ranging 17.5 - 35°C and relative humidity ranging 20% - 70%. With the potential application of nanofibers in many industries, especially membrane and filter fabrication, their reproducible production must be established to ensure commercially viability.
Cellulose acetate (CA) solution (0.2 g/ml) in a solvent mixture of acetone/DMF/ethanol (2:2:1) was electrospun into nonwoven fibre mesh with the fibre diameter ranging from 150nm to 1µm.
The resulting nanofibers were observed and analyzed by scanning electron microscopy (SEM), showing a correlation of reducing average fibre diameter with increasing atmospheric temperature. A less pronounced correlation was seen with changes in relative humidity regarding fibre diameter, though it was shown that increased humidity reduced the effect of fibre beading yielding a more consistent, and therefore better quality of fibre fabrication.
Differential scanning calorimetry (DSC) studies observed lower melt enthalpies for finer CA nanofibers in the first heating cycle confirming the results gained from SEM analysis. From the conditions that were explored in this study the temperature and humidity that gave the most suitable fibre mats for a membrane purpose were 25.0°C and 50%RH due to the highest level of fibre diameter uniformity, the lowest level of beading while maintaining a low fibre diameter for increased surface area and increased pore size homogeneity. This study has highlighted the requirement to control the atmospheric conditions during the electrospinning process in order to fabricate reproducible fibre mats
- …