111 research outputs found
Re-Os isotope and platinum group elements of a FOcal ZOne mantle source, Louisville Seamounts Chain, Pacific ocean
The Louisville Seamount Chain (LSC) is, besides the Hawaiian-Emperor Chain, one of the longest-lived hotspot traces. We report here the first Re-Os isotope and platinum group element (PGE) data for Canopus, Rigil, and Burton Guyots along the chain, which were drilled during IODP Expedition 330. The LSC basalts possess (187Os/188Os)iâ=â0.1245â0.1314 that are remarkably homogeneous and do not vary with age. A Re-Os isochron age of 64.9â±â3.2 Ma was obtained for Burton seamount (the youngest of the three seamounts drilled), consistent with 40Ar-39Ar data. Isochron-derived initial 187Os/188Os ratio of 0.1272â±â0.0008, together with data for olivines (0.1271â0.1275), are within the estimated primitive mantle values. This (187Os/188Os)i range is similar to those of Rarotonga (0.124â0.139) and Samoan shield (0.1276â0.1313) basalts and lower than those of Cook-Austral (0.136â0.155) and Hawaiian shield (0.1283â0.1578) basalts, suggesting little or no recycled component in the LSC mantle source. The PGE data of LSC basalts are distinct from those of oceanic lower crust. Variation in PGE patterns can be largely explained by different low degrees of melting under sulfide-saturated conditions of the same relatively fertile mantle source, consistent with their primitive mantle-like Os and primordial Ne isotope signatures. The PGE patterns and the low 187Os/188Os composition of LSC basalts contrast with those of Ontong Java Plateau (OJP) tholeiites. We conclude that the Re-Os isotope and PGE composition of LSC basalts reflect a relatively pure deep-sourced common mantle sampled by some ocean island basalts but is not discernible in the composition of OJP tholeiites
Geochemistry and Age of Shatsky, Hess, and Ojin Rise seamounts: Implications for a connection between the Shatsky and Hess Rises
Shatsky Rise in the Northwest Pacific is the best example so far of an oceanic plateau with two potential hotspot tracks emanating from it: the linear Papanin volcanic ridge and the seamounts comprising Ojin Rise. Arguably, these hotspot tracks also project toward the direction of Hess Rise, located âŒ1200 km away, leading to speculations that the two plateaus are connected. Dredging was conducted on the massifs and seamounts around Shatsky Rise in an effort to understand the relationship between these plateaus and associated seamounts. Here, we present new 40Ar/39Ar ages and trace element and Nd, Pb, and Hf isotopic data for the recovered dredged rocks and new trace elements and isotopic data for a few drill core samples from Hess Rise. Chemically, the samples can be subdivided into plateau basalt-like tholeiites and trachytic to alkalic ocean-island basalt compositions, indicating at least two types of volcanic activity. Tholeiites from the northern Hess Rise (DSDP Site 464) and the trachytes from Toronto Ridge on Shatskyâs TAMU massif have isotopic compositions that overlap with those of the drilled Shatsky Rise plateau basalts, suggesting that both Rises formed from the same mantle source. In contrast, trachytes from the southern Hess Rise (DSDP Site 465A) have more radiogenic Pb isotopic ratios that are shifted toward a high time-integrated U/Pb (HIMU-type mantle) composition. The compositions of the dredged seamount samples show two trends relative to Shatsky Rise data: one toward lower 143Nd/144Nd but similar 206Pb/204Pb ratios, the other toward similar 143Nd/144Nd but more radiogenic 206Pb/204Pb ratios. These trends can be attributed to lower degrees of melting either from lower mantle material during hotspot-related transition to plume tail or from less refractory shallow mantle components tapped during intermittent deformation-related volcanism induced by local tectonic extension between and after the main volcanic-edifice building episodes on Shatsky Rise. The ocean-island-basalt-like chemistry and isotopic composition of the Shatsky and Hess rise seamounts contrast with those formed by purely deformation-related shallow mantle-derived volcanism, favoring the role of a long-lived mantle anomaly in their origin. Finally, new 40Ar/39Ar evidence indicates that Shatsky Rise edifices may have been formed in multiple-stages and over a longer duration than previously believed
Inappropriate antibiotic use in the COVID-19 era: Factors associated with inappropriate prescribing and secondary complications. Analysis of the registry SEMI-COVID
Background: Most patients with COVID-19 receive antibiotics despite the fact that bacterial co-infections are rare. This can lead to increased complications, including antibacterial resistance. We aim to analyze risk factors for inappropriate antibiotic prescription in these patients and describe possible complications arising from their use. Methods: The SEMI-COVID-19 Registry is a multicenter, retrospective patient cohort. Patients with antibiotic were divided into two groups according to appropriate or inappropriate prescription, depending on whether the patient fulfill any criteria for its use. Comparison was made by means of multilevel logistic regression analysis. Possible complications of antibiotic use were also identified. Results: Out of 13,932 patients, 3047 (21.6%) were prescribed no antibiotics, 6116 (43.9%) were appropriately prescribed antibiotics, and 4769 (34.2%) were inappropriately prescribed antibiotics. The following were independent factors of inappropriate prescription: February-March 2020 admission (OR 1.54, 95%CI 1.18-2.00), age (OR 0.98, 95%CI 0.97-0.99), absence of comorbidity (OR 1.43, 95%CI 1.05-1.94), dry cough (OR 2.51, 95%CI 1.94-3.26), fever (OR 1.33, 95%CI 1.13-1.56), dyspnea (OR 1.31, 95%CI 1.04-1.69), flu-like symptoms (OR 2.70, 95%CI 1.75-4.17), and elevated C-reactive protein levels (OR 1.01 for each mg/L increase, 95% CI 1.00-1.01). Adverse drug reactions were more frequent in patients who received ANTIBIOTIC (4.9% vs 2.7%, p < .001). Conclusion: The inappropriate use of antibiotics was very frequent in COVID-19 patients and entailed an increased risk of adverse reactions. It is crucial to define criteria for their use in these patients. Knowledge of the factors associated with inappropriate prescribing can be helpful
Height and timing of growth spurt during puberty in young people living with vertically acquired HIV in Europe and Thailand
Objective: The aim of this study was to describe growth during puberty in young people with vertically acquired HIV. Design: Pooled data from 12 paediatric HIV cohorts in Europe and Thailand. Methods: One thousand and ninety-four children initiating a nonnucleoside reverse transcriptase inhibitor or boosted protease inhibitor based regimen aged 1-10 years were included. Super Imposition by Translation And Rotation (SITAR) models described growth from age 8 years using three parameters (average height, timing and shape of the growth spurt), dependent on age and height-for-age z-score (HAZ) (WHO references) at antiretroviral therapy (ART) initiation. Multivariate regression explored characteristics associated with these three parameters. Results: At ART initiation, median age and HAZ was 6.4 [interquartile range (IQR): 2.8, 9.0] years and -1.2 (IQR: -2.3 to -0.2), respectively. Median follow-up was 9.1 (IQR: 6.9, 11.4) years. In girls, older age and lower HAZ at ART initiation were independently associated with a growth spurt which occurred 0.41 (95% confidence interval 0.20-0.62) years later in children starting ART age 6 to 10 years compared with 1 to 2 years and 1.50 (1.21-1.78) years later in those starting with HAZ less than -3 compared with HAZ at least -1. Later growth spurts in girls resulted in continued height growth into later adolescence. In boys starting ART with HAZ less than -1, growth spurts were later in children starting ART in the oldest age group, but for HAZ at least -1, there was no association with age. Girls and boys who initiated ART with HAZ at least -1 maintained a similar height to the WHO reference mean. Conclusion: Stunting at ART initiation was associated with later growth spurts in girls. Children with HAZ at least -1 at ART initiation grew in height at the level expected in HIV negative children of a comparable age
Jardins per a la salut
Facultat de FarmĂ cia, Universitat de Barcelona. Ensenyament: Grau de FarmĂ cia. Assignatura: BotĂ nica farmacĂšutica. Curs: 2014-2015. Coordinadors: Joan Simon, CĂšsar BlanchĂ© i Maria Bosch.Els materials que aquĂ es presenten sĂłn el recull de les fitxes botĂ niques de 128 espĂšcies presents en el JardĂ Ferran Soldevila de lâEdifici HistĂČric de la UB. Els treballs han estat realitzats manera individual per part dels estudiants dels grups M-3 i T-1 de lâassignatura BotĂ nica FarmacĂšutica durant els mesos de febrer a maig del curs 2014-15 com a resultat final del Projecte dâInnovaciĂł Docent «Jardins per a la salut: aprenentatge servei a BotĂ nica farmacĂšutica» (codi 2014PID-UB/054). Tots els treballs sâhan dut a terme a travĂ©s de la plataforma de GoogleDocs i han estat tutoritzats pels professors de lâassignatura. Lâobjectiu principal de lâactivitat ha estat fomentar lâaprenentatge autĂČnom i col·laboratiu en BotĂ nica farmacĂšutica. TambĂ© sâha pretĂšs motivar els estudiants a travĂ©s del retorn de part del seu esforç a la societat a travĂ©s dâuna experiĂšncia dâAprenentatge-Servei, deixant disponible finalment el treball dels estudiants per a poder ser consultable a travĂ©s dâuna Web pĂșblica amb la possibilitat de poder-ho fer in-situ en el propi jardĂ mitjançant codis QR amb un smartphone
Indian Monsoonal Variations During the Past 80Â Kyr Recorded in NGHP-02 Hole 19B, Western Bay of Bengal: Implications From Chemical and Mineral Properties
éæȹ性ćŠçć·„ç 究ćć°ç瀟äŒćșç€ćŠçł»Detailed reconstruction of Indian summer monsoons is necessary to better understand the late Quaternary climate history of the Bay of Bengal and Indian peninsula. We established a chronostratigraphy for a sediment core from Hole 19B in the western Bay of Bengal, extending to approximately 80 kyr BP and examined major and trace element compositions and clay mineral components of the sediments. Higher ÎŽ 18 O values, lower TiO 2 contents, and weaker weathering in the sediment source area during marine isotope stages (MIS) 2 and 4 compared to MIS 1, 3, and 5 are explained by increased Indian summer monsoonal precipitation and river discharge around the western Bay of Bengal. Clay mineral and chemical components indicate a felsic sediment source, suggesting the Precambrian gneissic complex of the eastern Indian peninsula as the dominant sediment source at this site since 80 kyr. Trace element ratios (Cr/Th, Th/Sc, Th/Co, La/Cr, and Eu/Eu*) indicate increased sediment contributions from mafic rocks during MIS 2 and 4. We interpret these results as reflecting the changing influences of the eastern and western branches of the Indian summer monsoon and a greater decrease in rainfall in the eastern and northeastern parts of the Indian peninsula than in the western part during MIS 2 and 4. © 2018. American Geophysical Union. All Rights Reserved
Recommended from our members
Seismic stratigraphy of the central South China Sea basin and implications for neotectonics
Coring/logging data and physical property measurements from International Ocean Discovery Program Expedition 349 are integrated with, and correlated to, reflection seismic data to map seismic sequence boundaries and facies of the central basin and neighboring regions of the South China Sea. First-order sequence boundaries are interpreted, which are Oligocene/Miocene, middle Miocene/late Miocene, Miocene/Pliocene, and Pliocene/Pleistocene boundaries. A characteristic early Pleistocene strong reflector is also identified, which marks the top of extensive carbonate-rich deposition in the southern East and Southwest Subbasins. The fossil spreading ridge and the boundary between the East and Southwest Subbasins acted as major sedimentary barriers, across which seismic facies changes sharply and cannot be easily correlated. The sharp seismic facies change along the Miocene-Pliocene boundary indicates that a dramatic regional tectonostratigraphic event occurred at about 5 Ma, coeval with the onsets of uplift of Taiwan and accelerated subsidence and transgression in the northern margin. The depocenter or the area of the highest sedimentation rate switched from the northern East Subbasin during the Miocene to the Southwest Subbasin and the area close to the fossil ridge in the southern East Subbasin in the Pleistocene. The most active faulting and vertical uplifting now occur in the southern East Subbasin, caused most likely by the active and fastest subduction/obduction in the southern segment of the Manila Trench and the collision between the northeast Palawan and the Luzon arc. Timing of magmatic intrusions and seamounts constrained by seismic stratigraphy in the central basin varies and does not show temporal pulsing in their activities.Keywords: South China Sea, Neotectonism, Core-well-seismic integration, Seismic facies, Seismic stratigraphy, IODP Expedition 34
Recommended from our members
Ages and magnetic structures of the South China Sea constrained by deep tow magnetic surveys and IODP Expedition 349
Combined analyses of deep tow magnetic anomalies and International Ocean Discovery Program Expedition 349 cores show that initial seafloor spreading started around 33 Ma in the northeastern South China Sea (SCS), but varied slightly by 1-2 Myr along the northern continent-ocean boundary (COB). A southward ridge jump of âŒ20 km occurred around 23.6 Ma in the East Subbasin; this timing also slightly varied along the ridge and was coeval to the onset of seafloor spreading in the Southwest Subbasin, which propagated for about 400 km southwestward from âŒ23.6 to âŒ21.5 Ma. The terminal age of seafloor spreading is âŒ15 Ma in the East Subbasin and âŒ16 Ma in the Southwest Subbasin. The full spreading rate in the East Subbasin varied largely from âŒ20 to âŒ80 km/Myr, but mostly decreased with time except for the period between âŒ26.0 Ma and the ridge jump (âŒ23.6 Ma), within which the rate was the fastest at âŒ70 km/Myr on average. The spreading rates are not correlated, in most cases, to magnetic anomaly amplitudes that reflect basement magnetization contrasts. Shipboard magnetic measurements reveal at least one magnetic reversal in the top 100 m of basaltic layers, in addition to large vertical intensity variations. These complexities are caused by late-stage lava flows that are magnetized in a different polarity from the primary basaltic layer emplaced during the main phase of crustal accretion. Deep tow magnetic modeling also reveals this smearing in basement magnetizations by incorporating a contamination coefficient of 0.5, which partly alleviates the problem of assuming a magnetic blocking model of constant thickness and uniform magnetization. The primary contribution to magnetic anomalies of the SCS is not in the top 100 m of the igneous basement.Keywords: Crustal evolution, Deep tow magnetic survey, South China Sea tectonics, International Ocean Discovery Program Expedition 349, Magnetic anomaly, ModelingKeywords: Crustal evolution, Deep tow magnetic survey, South China Sea tectonics, International Ocean Discovery Program Expedition 349, Magnetic anomaly, Modelin
- âŠ