54 research outputs found

    The persistence of memory in ionic conduction probed by nonlinear optics

    Get PDF
    Predicting practical rates of transport in condensed phases enables the rational design of materials, devices and processes. This is especially critical to developing low-carbon energy technologies such as rechargeable batteries1,2,3. For ionic conduction, the collective mechanisms4,5, variation of conductivity with timescales6,7,8 and confinement9,10, and ambiguity in the phononic origin of translation11,12, call for a direct probe of the fundamental steps of ionic diffusion: ion hops. However, such hops are rare-event large-amplitude translations, and are challenging to excite and detect. Here we use single-cycle terahertz pumps to impulsively trigger ionic hopping in battery solid electrolytes. This is visualized by an induced transient birefringence, enabling direct probing of anisotropy in ionic hopping on the picosecond timescale. The relaxation of the transient signal measures the decay of orientational memory, and the production of entropy in diffusion. We extend experimental results using in silico transient birefringence to identify vibrational attempt frequencies for ion hopping. Using nonlinear optical methods, we probe ion transport at its fastest limit, distinguish correlated conduction mechanisms from a true random walk at the atomic scale, and demonstrate the connection between activated transport and the thermodynamics of information

    The Persistence of Memory in Ionic Conduction Probed by Nonlinear Optics

    Full text link
    Predicting practical rates of ion transport from atomistic descriptors enables the rational design of materials, devices, and processes, which is especially critical to developing low-carbon energy technologies such as rechargeable batteries. The correlated mechanisms of ionic conduction, variation of conductivity with timescale and confinement, and ambiguity in the vibrational origin of translation, the attempt frequency, call for a direct atomic probe of the most fundamental steps of ionic diffusion: ion hops. However, such hops are rare-event large-amplitude translations, and are challenging to excite and detect. Here we use single-cycle terahertz pumps to impulsively trigger ionic hopping in battery solid electrolytes. This is visualized by an induced transient birefringence enabling direct probing of anisotropy in ionic hopping on the picosecond timescale. The relaxation of the transient signal measures the decay of orientational memory, and the production of entropy in diffusion. We extend experimental results using in silico transient birefringence to identify attempt frequencies for ion hopping. Using nonlinear optical methods, we probe ion transport at its fastest limit, distinguish correlated conduction mechanisms from a true random walk at the atomic scale, and demonstrate the connection between activated transport and the thermodynamics of information.Comment: 41 pages, 22 figure

    Efficacy of Carraguard®-Based Microbicides In Vivo Despite Variable In Vitro Activity

    Get PDF
    Anti-HIV microbicides are being investigated in clinical trials and understanding how promising strategies work, coincident with demonstrating efficacy in vivo, is central to advancing new generation microbicides. We evaluated Carraguard® and a new generation Carraguard-based formulation containing the non-nucleoside reverse transcriptase inhibitor (NNRTI) MIV-150 (PC-817). Since dendritic cells (DCs) are believed to be important in HIV transmission, the formulations were tested for the ability to limit DC-driven infection in vitro versus vaginal infection of macaques with RT-SHIV (SIVmac239 bearing HIV reverse transcriptase). Carraguard showed limited activity against cell-free and mature DC-driven RT-SHIV infections and, surprisingly, low doses of Carraguard enhanced infection. However, nanomolar amounts of MIV-150 overcame enhancement and blocked DC-transmitted infection. In contrast, Carraguard impeded infection of immature DCs coincident with DC maturation. Despite this variable activity in vitro, Carraguard and PC-817 prevented vaginal transmission of RT-SHIV when applied 30 min prior to challenge. PC-817 appeared no more effective than Carraguard in vivo, due to the limited activity of a single dose of MIV-150 and the dominant barrier effect of Carraguard. However, 3 doses of MIV-150 in placebo gel at and around challenge limited vaginal infection, demonstrating the potential activity of a topically applied NNRTI. These data demonstrate discordant observations when comparing in vitro and in vivo efficacy of Carraguard-based microbicides, highlighting the difficulties in testing putative anti-viral strategies in vitro to predict in vivo activity. This work also underscores the potential of Carraguard-based formulations for the delivery of anti-viral drugs to prevent vaginal HIV infection

    Determination of nonthermal bonding origin of a novel photoexcited lattice instability in SnSe

    Full text link
    Interatomic forces that bind materials are largely determined by an often complex interplay between the electronic band-structure and the atomic arrangements to form its equilibrium structure and dynamics. As these forces also determine the phonon dispersion, lattice dynamics measurements are often crucial tools for understanding how materials transform between different structures. This is the case for the mono-chalcogenides which feature a number of lattice instabilities associated with their network of resonant bonds and a large tunability in their functional properties. SnSe hosts a novel lattice instability upon above-bandgap photoexcitation that is distinct from the distortions associated with its high temperature phase transition, demonstrating that photoexcitation can alter the interatomic forces significantly different than thermal excitation. Here we report decisive time-resolved X-ray scattering-based measurements of the nonequlibrium lattice dynamics in SnSe. By fitting interatomic force models to the excited-state dispersion, we determine this instability as being primarily due to changes in the fourth-nearest neighbor bonds that connect bilayers, with relatively little change to the intralayer resonant bonds. In addition to providing critical insight into the nonthermal bonding origin of the instability in SnSe, such measurements will be crucial for understanding and controlling materials properties under non-equilibrium conditions

    A Macaque Model to Study Vaginal HSV-2/Immunodeficiency Virus Co-Infection and the Impact of HSV-2 on Microbicide Efficacy

    Get PDF
    Herpes simplex virus type-2 (HSV-2) infection enhances the transmission and acquisition of human immunodeficiency virus (HIV). This occurs in symptomatic and asymptomatic stages of HSV-2 infection, suggesting that obvious herpetic lesions are not required to increase HIV spread. An animal model to investigate the underlying causes of the synergistic action of the two viruses and where preventative strategies can be tested under such complex physiological conditions is currently unavailable.We set out to establish a rhesus macaque model in which HSV-2 infection increases the susceptibility to vaginal infection with a model immunodeficiency virus (simian-human immunodeficiency virus, SHIV-RT), and to more stringently test promising microbicides. HSV-2 exposure significantly increased the frequency of vaginal SHIV-RT infection (n = 6). Although cervical lesions were detected in only approximately 10% of the animals, long term HSV-2 DNA shedding was detected (in 50% of animals followed for 2 years). Vaginal HSV-2 exposure elicited local cytokine/chemokine (n = 12) and systemic low-level HSV-2-specific adaptive responses in all animals (n = 8), involving CD4(+) and CD8(+) HSV-specific T cells (n = 5). Local cytokine/chemokine responses were lower in co-infected animals, while simian immunodeficiency virus (SIV)-specific adaptive responses were comparable in naïve and HSV-2-infected animals (n = 6). Despite the increased frequency of SHIV-RT infection, a new generation microbicide gel, comprised of Carraguard(R) and a non-nucleoside reverse transcriptase inhibitor MIV-150 (PC-817), blocked vaginal SHIV-RT infection in HSV-2-exposed animals (n = 8), just as in naïve animals.We established a unique HSV-2 macaque model that will likely facilitate research to define how HSV-2 increases HIV transmission, and enable more rigorous evaluation of candidate anti-viral approaches in vivo

    Differential shortstopping behaviour in Whooping Cranes: Habitat or social learning?

    Full text link
    Many migratory bird species have begun shifting their wintering grounds closer to their breeding grounds, shortening their yearly migration distance through a behavior called shortstopping. While multiple studies have investigated possible drivers, it remains unclear why only some populations adopt this behavior.We studied the differential occurrence of shortstopping in two populations of Whooping Cranes (Grus americana): a remnant population where juveniles migrate with their parents, and a reintroduced population consisting largely of captive-reared birds trained to migrate by unrelated conspecifics or by humans. Shortstopping is widespread in the reintroduced population, while the remnant population has not shown any appreciable northward movement of its overwintering sites. We examined potential drivers for this lack of shortstopping, including a lack of suitable habitat north of their current wintering area or social differences between populations.Using characteristics of winter locations used by the reintroduced population, we found that 31.4% of the remnant migration corridor was predicted to be suitable for wintering, suggesting that insufficient habitat suitability is not limiting shortstopping behaviour. However, we found evidence for behavioural differences that might explain the absence of shortstopping in the remnant population: while all juveniles of the remnant population associate with their parents during overwintering, juveniles from the reintroduced population did not associate with older conspecifics in 12 out of 25 observed wintering events, suggesting that the social transmission of winter migration behaviours might be less effective in the reintroduced population. Although social learning is generally believed to increase flexibility in migratory strategies, a strong vertical transmission of behaviour might enforce adherence to established traditions and reduce the uptake of novel behaviours such as shortstopping. We suggest that, besides habitat availability, social factors may also play a role in explaining the absence of shortstopping behaviour in some migratory bird populations

    Addressing the ADME Challenges of Compound Loss in a PDMS-Based Gut-on-Chip Microphysiological System

    Full text link
    Microphysiological systems (MPSs) are promising in vitro technologies for physiologically relevant predictions of the human absorption, distribution, metabolism, and excretion (ADME) properties of drug candidates. However, polydimethylsiloxane (PDMS), a common material used in MPSs, can both adsorb and absorb small molecules, thereby compromising experimental results. This study aimed to evaluate the feasibility of using the PDMS-based Emulate gut-on-chip to determine the first-pass intestinal drug clearance. In cell-free PDMS organ-chips, we assessed the loss of 17 drugs, among which testosterone was selected as a model compound for further study based on its substantial ad- and absorptions to organ chips and its extensive first-pass intestinal metabolism with well-characterized metabolites. A gut-on-chip model consisting of epithelial Caco-2 cells and primary human umbilical vein endothelial cells (HUVECs) was established. The barrier integrity of the model was tested with reference compounds and inhibition of drug efflux. Concentration–time profiles of testosterone were measured in cell-free organ chips and in gut-on-chip models. A method to deduce the metabolic clearance was provided. Our results demonstrate that metabolic clearance can be determined with PDMS-based MPSs despite substantial compound loss to the chip. Overall, this study offers a practical protocol to experimentally assess ADME properties in PDMS-based MPSs
    • …
    corecore