4 research outputs found

    Weakly Supervised Learning with Automated Labels from Radiology Reports for Glioma Change Detection

    Full text link
    Gliomas are the most frequent primary brain tumors in adults. Glioma change detection aims at finding the relevant parts of the image that change over time. Although Deep Learning (DL) shows promising performances in similar change detection tasks, the creation of large annotated datasets represents a major bottleneck for supervised DL applications in radiology. To overcome this, we propose a combined use of weak labels (imprecise, but fast-to-create annotations) and Transfer Learning (TL). Specifically, we explore inductive TL, where source and target domains are identical, but tasks are different due to a label shift: our target labels are created manually by three radiologists, whereas our source weak labels are generated automatically from radiology reports via NLP. We frame knowledge transfer as hyperparameter optimization, thus avoiding heuristic choices that are frequent in related works. We investigate the relationship between model size and TL, comparing a low-capacity VGG with a higher-capacity ResNeXt model. We evaluate our models on 1693 T2-weighted magnetic resonance imaging difference maps created from 183 patients, by classifying them into stable or unstable according to tumor evolution. The weak labels extracted from radiology reports allowed us to increase dataset size more than 3-fold, and improve VGG classification results from 75% to 82% AUC. Mixed training from scratch led to higher performance than fine-tuning or feature extraction. To assess generalizability, we ran inference on an open dataset (BraTS-2015: 15 patients, 51 difference maps), reaching up to 76% AUC. Overall, results suggest that medical imaging problems may benefit from smaller models and different TL strategies with respect to computer vision datasets, and that report-generated weak labels are effective in improving model performances. Code, in-house dataset and BraTS labels are released.Comment: This work has been submitted as Original Paper to a Journa

    Diagnostic surveillance of high-grade gliomas: towards automated change detection using radiology report classification

    No full text
    Natural Language Processing (NLP) on electronic health records (EHRs) can be used to monitor the evolution of pathologies over time to facilitate diagnosis and improve decision-making. In this study, we designed an NLP pipeline to classify Magnetic Resonance Imaging (MRI) radiology reports of patients with high-grade gliomas. Specifically, we aimed to distinguish reports indicating changes in tumors between one examination and the follow-up examination (treatment response/tumor progression versus stability). A total of 164 patients with 361 associated reports were retrieved from routine imaging, and reports were labeled by one radiologist. First, we assessed which embedding is more suitable when working with limited data, in French, from a specific domain. To do so, we compared a classic embedding techniques, TF-IDF, to a neural embedding technique, Doc2Vec, after hyperparameter optimization for both. A random forest classifier was used to classify the reports into stable (unchanged tumor) or unstable (changed tumor). Second, we applied the post-hoc LIME explainability tool to understand the decisions taken by the model. Overall, classification results obtained in repeated 5-fold cross-validation with TF-IDF reached around 89% AUC and were significantly better than those achieved with Doc2Vec (Wilcoxon signed-rank test, =0.009). The explainability toolkit run on TF-IDF revealed some interesting patterns: first, words indicating change such as progression were rightfully frequent for reports classified as unstable; similarly, words indicating no change such as not were frequent for reports classified as stable. Lastly, the toolkit discovered misleading words such as T2 which are clearly not directly relevant for the task. All the code used for this study is made available

    Diagnostic Surveillance of High-Grade Gliomas: Towards Automated Change Detection Using Radiology Report Classification

    No full text
    Natural Language Processing (NLP) on electronic health records (EHRs) can be used to monitor the evolution of pathologies over time to facilitate diagnosis and improve decision-making. In this study, we designed an NLP pipeline to classify Magnetic Resonance Imaging (MRI) radiology reports of patients with high-grade gliomas. Specifically, we aimed to distinguish reports indicating changes in tumors between one examination and the follow-up examination (treatment response/tumor progression versus stability). A total of 164 patients with 361 associated reports were retrieved from routine imaging, and reports were labeled by one radiologist. First, we assessed which embedding is more suitable when working with limited data, in French, from a specific domain. To do so, we compared a classic embedding techniques, TF-IDF, to a neural embedding technique, Doc2Vec, after hyperparameter optimization for both. A random forest classifier was used to classify the reports into stable (unchanged tumor) or unstable (changed tumor). Second, we applied the post-hoc LIME explainability tool to understand the decisions taken by the model. Overall, classification results obtained in repeated 5-fold cross-validation with TF-IDF reached around 89% AUC and were significantly better than those achieved with Doc2Vec (Wilcoxon signed-rank test, P=0.009 ). The explainability toolkit run on TF-IDF revealed some interesting patterns: first, words indicating change such as progression were rightfully frequent for reports classified as unstable; similarly, words indicating no change such as not were frequent for reports classified as stable. Lastly, the toolkit discovered misleading words such as T2 which are clearly not directly relevant for the task. All the code used for this study is made available
    corecore