15 research outputs found

    Is the Amyloid Hypothesis of Alzheimer’s disease therapeutically relevant?

    Get PDF
    The conventional view of AD (Alzheimer’s disease) is that much of the pathology is driven by an increased load of β-amyloid in the brain of AD patients (the ‘Amyloid Hypothesis’). Yet, many therapeutic strategies based on lowering β-amyloid have so far failed in clinical trials. This failure of β-amyloid-lowering agents has caused many to question the Amyloid Hypothesis itself. However, AD is likely to be a complex disease driven by multiple factors. In addition, it is increasingly clear that β-amyloid processing involves many enzymes and signalling pathways that play a role in a diverse array of cellular processes. Thus the clinical failure of β-amyloid-lowering agents does not mean that the hypothesis itself is incorrect; it may simply mean that manipulating β-amyloid directly is an unrealistic strategy for therapeutic intervention, given the complex role of β-amyloid in neuronal physiology. Another possible problem may be that toxic β-amyloid levels have already caused irreversible damage to downstream cellular pathways by the time dementia sets in. We argue in the present review that a more direct (and possibly simpler) approach to AD therapeutics is to rescue synaptic dysfunction directly, by focusing on the mechanisms by which elevated levels of β-amyloid disrupt synaptic physiology

    Resolution of urticarial vasculitis after treatment of neurocysticercosis

    Get PDF
    Urticarial vasculitis is most often idiopathic, but may occur in association with autoimmune disease, malignancy, drugs, or infection. Parasitic infection is a rare cause of urticarial vasculitis. We report a case of urticarial vasculitis that resolved after the diagnosis and treatment of neurocysticercosis

    Design and Synthesis of Neuroprotective Methylthiazoles and Modification as NO-Chimeras for Neurodegenerative Therapy

    Get PDF
    Learning and memory deficits in Alzheimer’s disease (AD) result from synaptic failure and neuronal loss, the latter caused in part by excitotoxicity and oxidative stress. A therapeutic approach is described that uses NO-chimeras directed at restoration of both synaptic function and neuroprotection. 4-Methylthiazole (MZ) derivatives were synthesized, based upon a lead neuroprotective pharmacophore acting in part by GABAA receptor potentiation. MZ derivatives were assayed for protection of primary neurons against oxygen−glucose deprivation and excitotoxicity. Selected neuroprotective derivatives were incorporated into NO-chimera prodrugs, coined nomethiazoles. To provide proof of concept for the nomethiazole drug class, selected examples were assayed for restoration of synaptic function in hippocampal slices from AD-transgenic mice, reversal of cognitive deficits, and brain bioavailability of the prodrug and its neuroprotective MZ metabolite. Taken together, the assay data suggest that these chimeric nomethiazoles may be of use in treatment of multiple components of neurodegenerative disorders, such as AD

    Synaptic therapy in Alzheimer's disease: a CREB-centric approach.

    Get PDF
    Therapeutic attempts to cure Alzheimer's disease (AD) have failed, and new strategies are desperately needed. Motivated by this reality, many laboratories (including our own) have focused on synaptic dysfunction in AD because synaptic changes are highly correlated with the severity of clinical dementia. In particular, memory formation is accompanied by altered synaptic strength, and this phenomenon (and its dysfunction in AD) has been a recent focus for many laboratories. The molecule cyclic adenosine monophosphate response element-binding protein (CREB) is at a central converging point of pathways and mechanisms activated during the processes of synaptic strengthening and memory formation, as CREB phosphorylation leads to transcription of memory-associated genes. Disruption of these mechanisms in AD results in a reduction of CREB activation with accompanying memory impairment. Thus, it is likely that strategies aimed at these mechanisms will lead to future therapies for AD. In this review, we will summarize literature that investigates 5 possible therapeutic pathways for rescuing synaptic dysfunction in AD: 4 enzymatic pathways that lead to CREB phosphorylation (the cyclic adenosine monophosphate cascade, the serine/threonine kinases extracellular regulated kinases 1 and 2, the nitric oxide cascade, and the calpains), as well as histone acetyltransferases and histone deacetylases (2 enzymes that regulate the histone acetylation necessary for gene transcription)

    Time-dependent reversal of synaptic plasticity induced by physiological concentrations of oligomeric Aβ42: an early index of Alzheimer’s disease

    Get PDF
    The oligomeric amyloid-β (Aβ) peptide is thought to contribute to the subtle amnesic changes in Alzheimer’s disease (AD) by causing synaptic dysfunction. Here, we examined the time course of synaptic changes in mouse hippocampal neurons following exposure to Aβ42 at picomolar concentrations, mimicking its physiological levels in the brain. We found opposite effects of the peptide with short exposures in the range of minutes enhancing synaptic plasticity, and longer exposures lasting several hours reducing it. The plasticity reduction was concomitant with an increase in the basal frequency of spontaneous neurotransmitter release, a higher basal number of functional presynaptic release sites, and a redistribution of synaptic proteins including the vesicle-associated proteins synapsin I, synaptophysin, and the post-synaptic glutamate receptor I. These synaptic alterations were mediated by cytoskeletal changes involving actin polymerization and p38 mitogen-activated protein kinase. These in vitro findings were confirmed in vivo with short hippocampal infusions of picomolar Aβ enhancing contextual memory and prolonged infusions impairing it. Our findings provide a model for initiation of synaptic dysfunction whereby exposure to physiologic levels of Aβ for a prolonged period of time causes microstructural changes at the synapse which result in increased transmitter release, failure of synaptic plasticity, and memory loss
    corecore