2,391 research outputs found

    Static Monopoles and Their Anti-Configurations

    Full text link
    Recently, we have reported on the existence of some monopoles, multimonopole, and antimonopoles configurations. In this paper we would like to present more monopoles, multimonopole, and antimonopoles configurations of the magnetic ansatz of Ref.\cite{kn:9} when the parameters pp and bb of the solutions takes different serial values. These exact solutions are a different kind of BPS solution. They satisfy the first order Bogomol'nyi equation but possess infinite energy. They can have radial, axial, or rotational symmetry about the z-axis. We classified these serial solutions as (i) the multimonopole at the origin; (ii) the finitely separated 1-monopoles; (iii) the screening solutions of multimonopole and (iv) the axially symmetric monopole solutions. We also give a construction of their anti-configurations with all the magnetic charges of poles in the configurations reversed. Half-integer topological magnetic charge multimonopole also exist in some of these series of solutions.Comment: 20 pages with 4 figure

    Dyons of One Half Monopole Charge

    Full text link
    We would like to present some exact SU(2) Yang-Mills-Higgs dyon solutions of one half monopole charge. These static dyon solutions satisfy the first order Bogomol'nyi equations and are characterized by a parameter, mm. They are axially symmetric. The gauge potentials and the electromagnetic fields possess a string singularity along the negative z-axis and hence they possess infinite energy density along the line singularity. However the net electric charges of these dyons which varies with the parameter mm are finite.Comment: 16 pages, 7 figure

    Half-Monopole and Multimonopole

    Full text link
    We would like to present some exact SU(2) Yang-Mills-Higgs monopole solutions of half-integer topological charge. These solutions can be just an isolated half-monopole or a multimonopole with topological magnetic charge, 1/2m{1/2}m, where mm is a natural number. These static monopole solutions satisfy the first order Bogomol'nyi equations. The axially symmetric one-half monopole gauge potentials possess a Dirac-like string singularity along the negative z-axis. The multimonopole gauge potentials are also singular along the z-axis and possess only mirror symmetries.Comment: 12 pages and 4 figures; typos corrected, reference adde

    Block shear failure planes of bolted connections - direct experimental verifications

    Get PDF
    This paper presents direct experimental verifications of the active shear planes in bolted connections, previously identified by the first author for determining the block shear capacity. The laboratory test results were obtained by independent researchers for specimens where the applied loads were resisted by the block in shear only. The first set consists of five bolted connection specimens in the webs of wide flange sections where the tensile resistance planes had been sawn off. The second set consists of ten bolted connection specimens each in one leg of an angle section that had fractured completely along the net tensile plane through a block shear failure. Comparisons among the gross, net, and active shear planes against the independent laboratory test results showed that the critical shear planes of bolted connections were best represented by the active shear planes rather than either the gross or the net shear planes. It is also pointed out that full or almost full shear strain hardening was generally achieved at the ultimate limit state of block shear failure of bolted connections in hot-rolled steel plates or sections, irrespective of the connection length. Verification against independent laboratory test results of tee sections bolted at the web reinforces this point

    Generalized Jacobi Elliptic One-Monopole - Type A

    Full text link
    We present new classical generalized one-monopole solution of the SU(2) Yang-Mills-Higgs theory with the Higgs field in the adjoint representation. We show that this generalized solution with Īø\theta-winding number m=1m=1 and Ļ•\phi-winding number n=1n=1 is an axially symmetric Jacobi elliptic generalization of the 't Hooft-Polyakov one-monopole. We construct this axially symmetric one-monopole solution by generalizing the large distance asymptotic solution of the 't Hooft-Polyakov one-monopole to the Jacobi elliptic functions and solving the second order equations of motion numerically when the Higgs potential is vanishing and non vanishing. These solutions are regular non-BPS finite energy solutions.Comment: 17 pages, 5 figure

    Tilt Bearing Capacity of Single-Shear Bolted Connections without Washers

    Get PDF
    This paper examines the accuracy of design equations specified in the North American and European codes for cold-formed steel structures in determining the ultimate tilt bearing capacity of single-shear single-row bolted connections without washers in flat steel sheets. It points out that the code equations do not properly distinguish the tilt bearing failure mode from the conventional bearing failure mode, which is typical of double-shear connections and single-shear connections with washers. The tilt bearing capacity is affected by the width of the connected sheet, and its capacity does not vary linearly with either the sheet thickness or the bolt diameter. Based on the test results of 150 specimens composed of G2 and G450 sheet steels having various dimensional configurations, this paper proposes a design equation that is dimensionally consistent and that is considerably more accurate than all the code equations. The proposed equation was also verified against single-shear single-row bolted connections tested by independent researchers which failed in the tilt bearing mode. A resistance factor of 0.75 is recommended for use with the proposed equation for determining the ultimate tilt bearing capacity of single shear single-row bolted connections in cold-reduced steel sheets

    Investigation of environmental change in two mesotrophic lakes in Mid-Wales: Llyn Eiddwen and Llyn Fanod

    Get PDF

    Heterozygous mis-sense mutations in Prkcb as a critical determinant of anti-polysaccharide antibody formation

    Get PDF
    To identify rate-limiting steps in T cell-independent type 2 (TI-2) antibody production against polysaccharide antigens, we performed a genome-wide screen by immunizing several hundred pedigrees of C57BL/6 mice segregating ENU-induced mis-sense mutations. Two independent mutations, Tilcara and Untied, were isolated that semi-dominantly diminished antibody against polysaccharide but not protein antigens. Both mutations resulted from single amino acid substitutions within the kinase domain of Protein Kinase C Beta (PKCĪ²). In Tilcara, a Ser552>Pro mutation occurred in helix G, in close proximity to a docking site for the inhibitory N-terminal pseudosubstrate domain of the enzyme, resulting in almost complete loss of active, autophosphorylated PKCĪ²I whereas the amount of alternatively spliced PKCĪ²II protein was not markedly reduced. Circulating B cell subsets were normal and acute responses to BCR-stimulation such as CD25 induction and initiation of DNA synthesis were only measurably diminished in Tilcara homozygotes, whereas the fraction of cells that had divided multiple times was decreased to an intermediate degree in heterozygotes. These results, coupled with evidence of numerous mis-sense PRKCB mutations in the human genome, identify Prkcb as a genetically sensitive step likely to contribute substantially to population variability in anti-polysaccharide antibody levels

    Spin Polarization through A Molecular Junction Based on Nuclear Berry Curvature Effects

    Full text link
    We explore the effects of spin-orbit coupling on nuclear wave packet motion near an out-of-equilibrium molecular junction, where nonzero Berry curvature emerges as the antisymmetric part of the electronic friction tensor. The existence of nonzero Berry curvature mandates that different nuclear wave packets (associated with different electronic spin states) experience different nuclear Berry curvatures, i.e. different pseudo-magnetic fields. Furthermore, for a generic, two-orbital two-lead model (representing the simplest molecular junction), we report significant spin polarization of the {\em electronic} current with decaying and oscillating signatures in the large voltage limit -- all as a result of {\em nuclear} motion. These results are consistent with magnetic AFM chiral-induced spin selectivity experiments. Altogether, our results highlight an essential role for Berry curvature in condensed phase dynamics, where spin separation survives dissipation to electron-hole pair creation and emerges as one manifestation of nuclear Berry curvature.Comment: Main text: 6 pages, 3 figures; Supplementary Material: 10 pages, 3 figure
    • ā€¦
    corecore