204 research outputs found

    Sinuosity and the affect grid: A method for adjusting repeated mood scores

    Get PDF
    Copyright @ 2012 Ammons Scientific. The article can be accessed from the links below.This article has been made available through the Brunel Open Access Publishing Fund.Sinuosity is a measure of how much a travelled pathway deviates from a straight line. In this paper, sinuosity is applied to the measurement of mood. The Affect Grid is a mood scale that requires participants to place a mark on a 9 x 9 grid to indicate their current mood. The grid has two dimensions: pleasure-displeasure (horizontal) and arousal-sleepiness (vertical). In studies where repeated measurements are required, some participants may exaggerate their mood shifts due to faulty interpretation of the scale or a feeling of social obligation to the experimenter. A new equation is proposed, based on the sinuosity measure in hydrology, a measure of the meandering of rivers. The equation takes into account an individual's presumed tendency to exaggerate and meander to correct the score and reduce outliers. The usefulness of the equation is demonstrated by applying it to Affect Grid data from another study.This article is made available through the Brunel Open Access Publishing Fund

    The Underestimation Of Egocentric Distance: Evidence From Frontal Matching Tasks

    Get PDF
    There is controversy over the existence, nature, and cause of error in egocentric distance judgments. One proposal is that the systematic biases often found in explicit judgments of egocentric distance along the ground may be related to recently observed biases in the perceived declination of gaze (Durgin & Li, Attention, Perception, & Psychophysics, in press), To measure perceived egocentric distance nonverbally, observers in a field were asked to position themselves so that their distance from one of two experimenters was equal to the frontal distance between the experimenters. Observers placed themselves too far away, consistent with egocentric distance underestimation. A similar experiment was conducted with vertical frontal extents. Both experiments were replicated in panoramic virtual reality. Perceived egocentric distance was quantitatively consistent with angular bias in perceived gaze declination (1.5 gain). Finally, an exocentric distance-matching task was contrasted with a variant of the egocentric matching task. The egocentric matching data approximate a constant compression of perceived egocentric distance with a power function exponent of nearly 1; exocentric matches had an exponent of about 0.67. The divergent pattern between egocentric and exocentric matches suggests that they depend on different visual cues

    Reducing bias in auditory duration reproduction by integrating the reproduced signal

    Get PDF
    Duration estimation is known to be far from veridical and to differ for sensory estimates and motor reproduction. To investigate how these differential estimates are integrated for estimating or reproducing a duration and to examine sensorimotor biases in duration comparison and reproduction tasks, we compared estimation biases and variances among three different duration estimation tasks: perceptual comparison, motor reproduction, and auditory reproduction (i.e. a combined perceptual-motor task). We found consistent overestimation in both motor and perceptual-motor auditory reproduction tasks, and the least overestimation in the comparison task. More interestingly, compared to pure motor reproduction, the overestimation bias was reduced in the auditory reproduction task, due to the additional reproduced auditory signal. We further manipulated the signal-to-noise ratio (SNR) in the feedback/comparison tones to examine the changes in estimation biases and variances. Considering perceptual and motor biases as two independent components, we applied the reliability-based model, which successfully predicted the biases in auditory reproduction. Our findings thus provide behavioral evidence of how the brain combines motor and perceptual information together to reduce duration estimation biases and improve estimation reliability

    Evaluating a model of global psychophysical judgments for brightness: II. Behavioral properties linking summations and productions

    Get PDF
    Steingrimsson (Attention, Perception, & Psychophysics, 71, 1916–1930, 2009) outlined Luce’s (Psychological Review, 109, 520–532 2002, 111, 446–454 2004) proposed psychophysical theory and tested, for brightness, behavioral properties that, separately, gave rise to two psychophysical functions, Ψ⊕ and \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}Ψ∘p {\Psi_{{ \circ_p}}} \end{document}. The function Ψ⊕ maps pairs of physical intensities onto positive real numbers and represents subjective summation, and the function \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}Ψ∘p {\Psi_{{ \circ_p}}} \end{document} represents a form of ratio production. This article, the second in a series expected to consist of three articles, tests the properties linking summation and production such that it forces \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}Ψ∘p=Ψ⊕=Ψ {\Psi_{{ \circ_p}}} = {\Psi_\oplus } = \Psi \end{document}. The properties tested are a form of distributivity and, in three experiments, were subjected to an empirical evaluation. Considerable support is provided for the existence of a single function Ψ for both summation and ratio production. The scope of this series of articles is to establish the theory as a descriptive model of binocular brightness perception

    Accurate Visuomotor Control below the Perceptual Threshold of Size Discrimination

    Get PDF
    Background: Human resolution for object size is typically determined by psychophysical methods that are based on conscious perception. In contrast, grasping of the same objects might be less conscious. It is suggested that grasping is mediated by mechanisms other than those mediating conscious perception. In this study, we compared the visual resolution for object size of the visuomotor and the perceptual system. Methodology/Principal Findings: In Experiment 1, participants discriminated the size of pairs of objects once through perceptual judgments and once by grasping movements toward the objects. Notably, the actual size differences were set below the Just Noticeable Difference (JND). We found that grasping trajectories reflected the actual size differences between the objects regardless of the JND. This pattern was observed even in trials in which the perceptual judgments were erroneous. The results of an additional control experiment showed that these findings were not confounded by task demands. Participants were not aware, therefore, that their size discrimination via grasp was veridical. Conclusions/Significance: We conclude that human resolution is not fully tapped by perceptually determined thresholds

    Holding an object one is looking at: Kinesthetic information on the object’s distance does not improve visual judgments of its size

    Full text link
    Visual judgments of distance are often inaccurate. Nevertheless, information on distance must be procured if retinal image size is to be used to judge an object's dimensions. In the present study, we examined whether kinesthetic information about an object's distance - based on the posture of the arm and hand when holding it - influences the object's perceived size. Subjects were presented with a computer simulation of a cube. This cube's position was coupled to that of a rod in the subject's hand. Its size was varied between presentations. Subjects had to judge whether the cube they saw was larger than, smaller than, or the same size as a reference. On some presentations, a small difference was introduced between the positions of the rod and of the simulated cube. When the simulated cube was slightly closer than the rod, subjects judged the cube to be larger. When it was farther away, they judged it to be smaller. We show that these changes in perceived size are due to alterations in the cube's distance from the subject rather than to kinesthetic information
    • …
    corecore