29 research outputs found

    Synthesis of Peptides from α- and β-Tubulin Containing Glutamic Acid Side-Chain Linked Oligo-Glu with Defined Length

    Get PDF
    Side-chain oligo- and polyglutamylation represents an important posttranslational modification in tubulin physiology. The particular number of glutamate units is related to specific regulatory functions. In this work, we present a method for the synthesis of building blocks for the Fmoc synthesis of peptides containing main chain glutamic acid residues that carry side-chain branching with oligo-glutamic acid. The two model peptide sequences CYEEVGVDSVEGEG-E(Ex)-EEGEEY and CQDATADEQG-E(Ex)-FEEEEGEDEA from the C-termini of mammalian α1- and β1-tubulin, respectively, containing oligo-glutamic acid side-chain branching with lengths of 1 to 5 amino acids were assembled in good yield and purity. The products may lead to the generation of specific antibodies which should be important tools for a more detailed investigation of polyglutamylation processes

    High-throughput screening and whole genome sequencing identifies an antimicrobially active inhibitor of Vibrio cholerae

    Get PDF
    BACKGROUND: Pathogenic serotypes of Vibrio cholerae cause the life-threatening diarrheal disease cholera. The increasing development of bacterial resistances against the known antibiotics necessitates the search for new antimicrobial compounds and targets for this pathogen. RESULTS: A high-throughput screening assay with a Vibrio cholerae reporter strain constitutively expressing green fluorescent protein (GFP) was developed and applied in the investigation of the growth inhibitory effect of approximately 28,300 structurally diverse natural compounds and synthetic small molecules. Several compounds with activities in the low micromolar concentration range were identified. The most active structure, designated vz0825, displayed a minimal inhibitory concentration (MIC) of 1.6 μM and a minimal bactericidal concentration (MBC) of 3.2 μM against several strains of V. cholerae and was specific for this pathogen. Mutants with reduced sensitivity against vz0825 were generated and whole genome sequencing of 15 pooled mutants was carried out. Comparison with the genome of the wild type strain identified the gene VC_A0531 (GenBank: AE003853.1) as the major site of single nucleotide polymorphisms in the resistant mutants. VC_A0531 is located on the small chromosome of V. cholerae and encodes the osmosensitive K(+)-channel sensor histidine kinase (KdpD). Nucleotide exchange of the major mutation site in the wild type strain confirmed the sensitive phenotype. CONCLUSION: The reporter strain MO10 pG13 was successfully used for the identification of new antibacterial compounds against V. cholerae. Generation of resistant mutants and whole genome sequencing was carried out to identify the histidine kinase KdpD as a novel antimicrobial target

    Identification of a PA-Binding Peptide with Inhibitory Activity against Influenza A and B Virus Replication

    Get PDF
    There is an urgent need for new drugs against influenza type A and B viruses due to incomplete protection by vaccines and the emergence of resistance to current antivirals. The influenza virus polymerase complex, consisting of the PB1, PB2 and PA subunits, represents a promising target for the development of new drugs. We have previously demonstrated the feasibility of targeting the protein-protein interaction domain between the PB1 and PA subunits of the polymerase complex of influenza A virus using a small peptide derived from the PA-binding domain of PB1. However, this influenza A virus-derived peptide did not affect influenza B virus polymerase activity. Here we report that the PA-binding domain of the polymerase subunit PB1 of influenza A and B viruses is highly conserved and that mutual amino acid exchange shows that they cannot be functionally exchanged with each other. Based on phylogenetic analysis and a novel biochemical ELISA-based screening approach, we were able to identify an influenza A-derived peptide with a single influenza B-specific amino acid substitution which efficiently binds to PA of both virus types. This dual-binding peptide blocked the viral polymerase activity and growth of both virus types. Our findings provide proof of principle that protein-protein interaction inhibitors can be generated against influenza A and B viruses. Furthermore, this dual-binding peptide, combined with our novel screening method, is a promising platform to identify new antiviral lead compounds

    Peptide-Mediated Interference with Influenza A Virus Polymerase▿

    Get PDF
    The assembly of the polymerase complex of influenza A virus from the three viral polymerase subunits PB1, PB2, and PA is required for viral RNA synthesis. We show that peptides which specifically bind to the protein-protein interaction domains in the subunits responsible for complex formation interfere with polymerase complex assembly and inhibit viral replication. Specifically, we provide evidence that a 25-amino-acid peptide corresponding to the PA-binding domain of PB1 blocks the polymerase activity of influenza A virus and inhibits viral spread. Targeting polymerase subunit interactions therefore provides a novel strategy to develop antiviral compounds against influenza A virus or other viruses

    T4SS-dependent TLR5 activation by Helicobacter pylori infection

    Get PDF
    Toll-like receptor TLR5 recognizes a conserved domain, termed D1, that is present in flagellins of several pathogenic bacteria but not in Helicobacter pylori. Highly virulent H. pylori strains possess a type IV secretion system (T4SS) for delivery of virulence factors into gastric epithelial cells. Here, we show that one of the H. pylori T4SS components, protein CagL, can act as a flagellin-independent TLR5 activator. CagL contains a D1-like motif that mediates adherence to TLR5+^{+} epithelial cells, TLR5 activation, and downstream signaling in vitro. TLR5 expression is associated with H. pylori infection and gastric lesions in human biopsies. Using Tlr5-knockout and wild-type mice, we show that TLR5 is important for efficient control of H. pylori infection. Our results indicate that CagL, by activating TLR5, may modulate immune responses to H. pylori

    Selective Bacterial Targeting and Infection-Triggered Release of Antibiotic Colistin Conjugates.

    No full text
    In order to render potent, but toxic antibiotics more selective, we have explored a novel conjugation strategy that includes drug accumulation followed by infection-triggered release of the drug. Bacterial targeting was achieved using a modified fragment of the human antimicrobial peptide ubiquicidin, as demonstrated by fluorophore-tagged variants. To limit the release of the effector colistin only to infection-related situations, we introduced a linker that was cleaved by neutrophil elastase (NE), an enzyme secreted by neutrophil granulocytes at infection sites. The linker carried an optimized sequence of amino acids that was required to assure sufficient cleavage efficiency. The antibacterial activity of five regioisomeric conjugates prepared by total synthesis was masked, but was released upon exposure to recombinant NE when the linker was attached to amino acids at the 1- or the 3-position of colistin. A proof-of-concept was achieved in co-cultures of primary human neutrophils and Escherichia coli that induced the secretion of NE, the release of free colistin, and an antibacterial efficacy that was equal to that of free colistin
    corecore