9 research outputs found

    Correction: Teeuwssen and fodde; colon cancer heterogeneity and phenotypic plasticity in metastasis formation (Cancers (2019) 11, 9, 1368)

    Get PDF
    The authors would like to make a correction to their published paper [1]. The authors would like to change one incorrect sentence in reference [1]. On page 9, in paragraph 2, the sentence "In colon cancer, CAFs release exosomes containing miR-92a-3p and promote invasion and chemotherapy resistance. miR-92a-3p directly binds to FBXW7 and MOAP1 thereby activating Wnt-induced EMT and mitochondrial apoptosis [89]'should be changed to "In colon cancer, CAFs release exosomes containing miR-92a-3p and promote invasion and chemotherapy resistance. miR-92a-3p directly binds to FBXW7 and MOAP1 thereby activating Wnt-induced EMT and inhibiting mitochondrial apoptosis [89]." The change does not affect the scientific results. The rest of the manuscript does not to be changed. The authors would like to apologize for any inconvenience caused. The manuscript will be updated, and the original will remain available on the article webpage

    Cell heterogeneity and phenotypic plasticity in metastasis formation: The case of colon cancer

    Get PDF
    The adenoma-to-carcinoma progression in colon cancer is driven by a sequential accumulation of genetic alterations at specific tumor suppressors and oncogenes. In contrast, the multistage route from the primary site to metastasis formation is underlined by phenotypic plasticity, i.e., the capacity of disseminated tumor cells to undergo transiently and reversible transformations in order to adapt to the ever-changing environmental contexts. Notwithstanding the considerable body of evidence in support of the role played by epithelial-to-mesenchymal transition (EMT)/mesenchymal-to-epithelial transition (MET) in metastasis, its rate-limiting function, the detailed underlying cellular and molecular mechanisms, and the extension of the necessary morphologic and epigenetic changes are still a matter of debate. Rather than leading to a complete epithelial or mesenchymal state, the EMT/MET-program generates migrating cancer cells displaying intermediate phenotypes featuring both epithelial and mesenchymal characteristics. In this review, we will address the role of colon cancer heterogeneity and phenotypic plasticity in metastasis formation and the contribution of EMT to these processes. The alleged role of hybrid epithelial/mesenchymal (E/M) in collective and/or single-cell migration during local dissemination at the primary site and more systemic spreading will also be highlighted

    Paternal heterochromatin formation in human embryos is H3K9/HP1 directed and primed by sperm-derived histone modifications

    Get PDF
    The different configurations of maternal and paternal chromatin, acquired during oogenesis and spermatogenesis, have to be rearranged after fertilization to form a functional embryonic genome. In the paternal genome, nucleosomal chromatin domains are re-established after the protamine-to-histone exchange. We investigated the formation of constitutive heterochromatin (cHC) in human preimplantation embryos. Our results show that histones carrying canonical cHC modifications are retained in cHC regions of sperm chromatin. These modified histones are transmitted to the oocyte and contribute to the formation of paternal embryonic cHC. Subsequently, the modifications are recognized by the H3K9/HP1 pathway maternal chromatin modifiers and propagated over the embryonic cleavage divisions. These results are in contrast to what has been described for mouse embryos, in which paternal cHC lacks canonical modifications and is initially established by Polycomb group proteins. Our results show intergenerational epigenetic inheritance of the cHC structure in human embryos

    DOC1-Dependent Recruitment of NURD Reveals Antagonism with SWI/SNF during Epithelial-Mesenchymal Transition i

    Get PDF
    The Nucleosome Remodeling and Deacetylase (NURD) complex is a key regulator of cell differentiation that has also been implicated in tumorigenesis. Loss of the NURD subunit Deleted in Oral Cancer 1 (DOC1) is associated with human oral squamous cell carcinomas (OSCCs). Here, we show that restoration of DOC1 expression in OSCC cells leads to a reversal of epithelial-mesenchymal transition (EMT). This is caused by the DOC1-dependent targeting of NURD to repress key transcriptional regulators of EMT. NURD recruitment drives extensive epigenetic reprogramming, including eviction of the SWI/SNF remodeler, formation of inaccessible chromatin, H3K27 deacetylation, and binding of PRC2 and KDM1A, followed by H3K27 methylation and H3K4 demethylation. Strikingly, depletion of SWI/SNF mimics the effects of DOC1 re-expression. Our results suggest that SWI/SNF and NURD function antagonistically to control chromatin state and transcription. We propose that disturbance of this dynamic equilibrium may lead to defects in gene expression that promote oncogenesis

    DOC1-Dependent Recruitment of NURD Reveals Antagonism with SWI/SNF during Epithelial-Mesenchymal Transition in Oral Cancer Cells

    Get PDF
    The Nucleosome Remodeling and Deacetylase (NURD) complex is a key regulator of cell differentiation that has also been implicated in tumorigenesis. Loss of the NURD subunit Deleted in Oral Cancer 1 (DOC1) is associated with human oral squamous cell carcinomas (OSCCs). Here, we show that restoration of DOC1 expression in OSCC cells leads to a reversal of epithelial-mesenchymal transition (EMT). This is caused by the DOC1-dependent targeting of NURD to repress key transcriptional regulators of EMT. NURD recruitment drives extensive epigenetic reprogramming, including eviction of the SWI/SNF remodeler, formation of inaccessible chromatin, H3K27 deacetylation, and binding of PRC2 and KDM1A, followed by H3K27 methylation and H3K4 demethylation. Strikingly, depletion of SWI/SNF mimics the effects of DOC1 re-expression. Our results suggest that SWI/SNF and NURD function antagonistically to control chromatin state and transcription. We propose that disturbance of this dynamic equilibrium may lead to defects in gene expression that promote oncogenesis

    Phenotypic plasticity underlies local invasion and distant metastasis in colon cancer

    Get PDF
    Phenotypic plasticity represents the most relevant hallmark of the carcinoma cell as it bestows it with the capacity of transiently altering its morphological and functional features while en route to the metastatic site. However, the study of phenotypic plasticity is hindered by the rarity of these events within primary lesions and by the lack of experimental models. Here, we identified a subpopulation of phenotypic plastic colon cancer cells: EpCAMlo cells are motile, invasive, chemo-resistant, and highly metastatic. EpCAMlo bulk and single-cell RNAseq analysis indicated (1) enhanced Wnt/β-catenin signaling, (2) a broad spectrum of degrees of epithelial to mesenchymal transition (EMT) activation including hybrid E/M states (partial EMT) with highly plastic features, and (3) high correlation with the CMS4 subtype, accounting for colon cancer cases with poor prognosis and a pronounced stromal component. Of note, a signature of genes specifically expressed in EpCAMlo cancer cells is highly predictive of overall survival in tumors other than CMS4, thus highlighting the relevance of quasi-mesenchymal tumor cells across the spectrum of colon cancers. Enhanced Wnt and the downstream EMT activation represent key events in eliciting phenotypic plasticity along the invasive front of primary colon carcinomas. Distinct sets of epithelial and mesenchymal genes define transcriptional trajectories through which state transitions arise. pEMT cells, often earmarked by the extracellular matrix glycoprotein SPARC together with nuclear ZEB1 and β-catenin along the invasive front of primary colon carcinomas, are predicted to represent the origin of these (de)differentiation routes through biologically distinct cellular states and to underlie the phenotypic plasticity of colon cancer cells

    DOC1-Dependent Recruitment of NURD Reveals Antagonism with SWI/SNF during Epithelial-Mesenchymal Transition in Oral Cancer Cells

    No full text
    The Nucleosome Remodeling and Deacetylase (NURD) complex is a key regulator of cell differentiation that has also been implicated in tumorigenesis. Loss of the NURD subunit Deleted in Oral Cancer 1 (DOC1) is associated with human oral squamous cell carcinomas (OSCCs). Here, we show that restoration of DOC1 expression in OSCC cells leads to a reversal of epithelial-mesenchymal transition (EMT). This is caused by the DOC1-dependent targeting of NURD to repress key transcriptional regulators of EMT. NURD recruitment drives extensive epigenetic reprogramming, including eviction of the SWI/SNF remodeler, formation of inaccessible chromatin, H3K27 deacetylation, and binding of PRC2 and KDM1A, followed by H3K27 methylation and H3K4 demethylation. Strikingly, depletion of SWI/SNF mimics the effects of DOC1 re-expression. Our results suggest that SWI/SNF and NURD function antagonistically to control chromatin state and transcription. We propose that disturbance of this dynamic equilibrium may lead to defects in gene expression that promote oncogenesis

    DOC1-dependent recruitment of NURD reveals antagonism with SWI/SNF during epithelial-mesenchymal transition in oral cancer cells.

    No full text
    Accession Number: GSE97839 Platform: GPL16791: Illumina HiSeq 2500 (Homo sapiens) Organism: Homo sapiens Published on 2017-07-05 Summary: The Nucleosome Remodeling and Deacetylase (NURD) complex is a key regulator of cell differentiation that has also been implicated in tumorigenesis. Loss of the NURD subunit DOC1 is associated with human oral squamous cell carcinomas (OSCC). Here, we show that restoration of DOC1 expression in OSCC cells leads to a reversal of epithelial-mesenchymal transition (EMT). This is caused by the DOC1-dependent recruitment of NURD to repress the Twist master regulators of EMT. NURD recruitment drives extensive epigenetic reprogramming, including eviction of the SWI/SNF remodeler, formation of inaccessible chromatin, H3K27 deacetylation, recruitment of PRC2 and KDM1A, followed by H3K27 methylation and H3K4 demethylation. Strikingly, depletion of SWI/SNF mimics the effects of DOC1 re-expression. Our results suggest that SWI/SNF and NURD function antagonistically to control chromatin state. We propose that disturbance of this dynamic equilibrium may lead to defects in gene expression that drive human cancer. Overall Design: Examination of NURD binding with loss of NURD subunit DOC1. Contact: Name: C. Peter Verrijzer Organization: Erasmus MC Deparment: Department of Biochemistry Address: Dr Molewaterplein 50 Rotterdam Netherlands Email: [email protected] Phone: +31-104087461 Organization: GEO Address: US

    DOC1-dependent recruitment of NURD reveals antagonism with SWI/SNF during epithelial-mesenchymal transition in oral cancer cells.

    No full text
    Accession Number: GSE97839 Platform: GPL16791: Illumina HiSeq 2500 (Homo sapiens) Organism: Homo sapiens Published on 2017-07-05 Summary: The Nucleosome Remodeling and Deacetylase (NURD) complex is a key regulator of cell differentiation that has also been implicated in tumorigenesis. Loss of the NURD subunit DOC1 is associated with human oral squamous cell carcinomas (OSCC). Here, we show that restoration of DOC1 expression in OSCC cells leads to a reversal of epithelial-mesenchymal transition (EMT). This is caused by the DOC1-dependent recruitment of NURD to repress the Twist master regulators of EMT. NURD recruitment drives extensive epigenetic reprogramming, including eviction of the SWI/SNF remodeler, formation of inaccessible chromatin, H3K27 deacetylation, recruitment of PRC2 and KDM1A, followed by H3K27 methylation and H3K4 demethylation. Strikingly, depletion of SWI/SNF mimics the effects of DOC1 re-expression. Our results suggest that SWI/SNF and NURD function antagonistically to control chromatin state. We propose that disturbance of this dynamic equilibrium may lead to defects in gene expression that drive human cancer. Overall Design: Examination of NURD binding with loss of NURD subunit DOC1. Contact: Name: C. Peter Verrijzer Organization: Erasmus MC Deparment: Department of Biochemistry Address: Dr Molewaterplein 50 Rotterdam Netherlands Email: [email protected] Phone: +31-104087461 Organization: GEO Address: US
    corecore