1 research outputs found
Recovering 3D structural properties of galaxies from SDSS-like photometry
Because of the 3D nature of galaxies, an algorithm for constructing spatial
density distribution models of galaxies on the basis of galaxy images has many
advantages over surface density distribution approximations. We present a
method for deriving spatial structure and overall parameters of galaxies from
images and estimate its accuracy and derived parameter degeneracies on a sample
of idealised model galaxies. The test galaxies consist of a disc-like component
and a spheroidal component with varying proportions and properties. Both
components are assumed to be axially symmetric and coplanar. We simulate these
test galaxies as if observed in the SDSS project through ugriz filters, thus
gaining a set of realistically imperfect images of galaxies with known
intrinsic properties. These artificial SDSS galaxies were thereafter remodelled
by approximating the surface brightness distribution with a 2D projection of a
bulge+disc spatial distribution model and the restored parameters were compared
to the initial ones. Down to the r-band limiting magnitude 18, errors of the
restored integral luminosities and colour indices remain within 0.05 mag and
errors of the luminosities of individual components within 0.2 mag. Accuracy of
the restored bulge-to-disc ratios (B/D) is within 40% in most cases, and
becomes worse for galaxies with low B/D, but the general balance between bulges
and discs is not shifted systematically. Assuming that the intrinsic disc axial
ratio is < 0.3, the inclination angles can be estimated with errors < 5deg for
most of the galaxies with B/D < 2 and with errors < 15deg up to B/D = 6. Errors
of the recovered sizes of the galactic components are below 10% in most cases.
In general, models of disc components are more accurate than models of
spheroidal components for geometrical reasons.Comment: 15 pages, 13 figures, accepted for publication in RA