29 research outputs found
Applied optimal control for dynamically stable legged locomotion
Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 2004.Includes bibliographical references (p. 79-84).Online learning and controller adaptation will be an essential component for legged robots in the next few years as they begin to leave the laboratory setting and join our world. I present the first example of a learning system which is able to quickly and reliably acquire a robust feedback control policy for 3D dynamic bipedal walking from a blank slate using only trials implemented on the physical robot. The robot begins walking within a minute and learning converges in approximately 20 minutes. The learning works quickly enough that the robot is able to continually adapt to the terrain as it walks. This success can be attributed in part to the mechanics of our robot, which is capable of stable walking down a small ramp even when the computer is turned off. In this thesis, I analyze the dynamics of passive dynamic walking, starting with reduced planar models and working up to experiments on our real robot. I describe, in detail, the actor-critic reinforcement learning algorithm that is implemented on the return map dynamics of the biped. Finally, I address issues of scaling and controller augmentation using tools from optimal control theory and a simulation of a planar one-leg hopping robot. These learning results provide a starting point for the production of robust and energy efficient walking and running robots that work well initially, and continue to improve with experience.by Russell L. Tedrake.Ph.D
Tracking objects with point clouds from vision and touch
We present an object-tracking framework that fuses point cloud information from an RGB-D camera with tactile information from a GelSight contact sensor. GelSight can be treated as a source of dense local geometric information, which we incorporate directly into a conventional point-cloud-based articulated object tracker based on signed-distance functions. Our implementation runs at 12 Hz using an online depth reconstruction algorithm for GelSight and a modified second-order update for the tracking algorithm. We present data from hardware experiments demonstrating that the addition of contact-based geometric information significantly improves the pose accuracy during contact, and provides robustness to occlusions of small objects by the robot's end effector
A Parallel Autonomy Research Platform
We present the development of a full-scale âparallel autonomyâ research platform including software and hardware. In the parallel autonomy paradigm, the control of the vehicle is shared; the human is still in control of the vehicle, but the autonomy system is always running in the background to prevent accidents. Our holistic approach includes: (1) a driveby-wire conversion method only based on reverse engineering,
(2) mounting of relatively inexpensive sensors onto the vehicle, (3) implementation of a localization and mapping system, (4) obstacle detection and (5) a shared controller as well as (6) integration with an advanced autonomy simulation system (Drake) for rapid development and testing. The system can operate in three modes: (a) manual driving, (b) full autonomy, where the system is in complete control of the vehicle and (c) parallel autonomy, where the shared controller is implemented. We present results from extensive testing of a full-scale vehicle on closed tracks that demonstrate these capabilities
Planning robust walking motion on uneven terrain via convex optimization
In this paper, we present a convex optimization problem to generate Center of Mass (CoM) and momentum trajectories of a walking robot, such that the motion robustly satisfies the friction cone constraints on uneven terrain. We adopt the Contact Wrench Cone (CWC) criterion to measure a robot's dynamical stability, which generalizes the venerable Zero Moment Point (ZMP) criterion. Unlike the ZMP criterion, which is ideal for walking on flat ground with unbounded tangential friction forces, the CWC criterion incorporates non-coplanar contacts with friction cone constraints. We measure the robustness of the motion using the margin in the Contact Wrench Cone at each time instance, which quantifies the capability of the robot to instantaneously resist external force/torque disturbance, without causing the foot to tip over or slide. For pre-specified footstep location and time, we formulate a convex optimization problem to search for robot linear and angular momenta that satisfy the CWC criterion. We aim to maximize the CWC margin to improve the robustness of the motion, and minimize the centroidal angular momentum (angular momentum about CoM) to make the motion natural. Instead of directly minimizing the non-convex centroidal angular momentum, we resort to minimizing a convex upper bound. We show that our CWC planner can generate motion similar to the result of the ZMP planner on flat ground with sufficient friction. Moreover, on an uneven terrain course with friction cone constraints, our CWC planner can still find feasible motion, while the outcome of the ZMP planner violates the friction limit. Keywords: Friction; Robustness; Legged locomotion; Robot kinematics; Foot; Convex functionsNavy - ONR / Fy AppropriationsUncapped Funds (6923036
Robust Online Motion Planning with Regions of Finite Time Invariance
In this paper we consider the problem of generating motion plans for a nonlinear dynamical system that are guaranteed to succeed despite uncertainty in the environment, parametric model uncertainty, disturbances, and/or errors in state estimation. Furthermore, we consider the case where these plans must be generated online, because constraints such as obstacles in the environment may not be known until they are perceived (with a noisy sensor) at runtime. Previous work on feedback motion planning for nonlinear systems was limited to offline planning due to the computational cost of safety verification. Here we take a trajectory library approach by designing controllers that stabilize the nominal trajectories in the library and precomputing regions of finite time invariance (âfunnelsâ) for the resulting closed loop system. We leverage sums-of-squares programming in order to efficiently compute funnels which take into account bounded disturbances and uncertainty. The resulting funnel library is then used to sequentially compose motion plans at runtime while ensuring the safety of the robot. A major advantage of the work presented here is that by explicitly taking into account the effect of uncertainty, the robot can evaluate motion plans based on how vulnerable they are to disturbances.We demonstrate our method on a simulation of a plane flying through a two dimensional forest of polygonal trees with parametric uncertainty and disturbances in the form of a bounded âcross-windâ. Keywords: Lyapunov Function; Motion Planning; Unmanned Aerial Vehicle; Model Predictive Control; Time Invarianc
Funnel libraries for real-time robust feedback motion planning
We consider the problem of generating motion plans for a robot that are guaranteed to succeed despite uncertainty in the environment, parametric model uncertainty, and disturbances. Furthermore, we consider scenarios where these plans must be generated in real time, because constraints such as obstacles in the environment may not be known until they are perceived (with a noisy sensor) at runtime. Our approach is to pre-compute a library of "funnels" along different maneuvers of the system that the state is guaranteed to remain within (despite bounded disturbances) when the feedback controller corresponding to the maneuver is executed. We leverage powerful computational machinery from convex optimization (sums-of-squares programming in particular) to compute these funnels. The resulting funnel library is then used to sequentially compose motion plans at runtime while ensuring the safety of the robot. A major advantage of the work presented here is that by explicitly taking into account the effect of uncertainty, the robot can evaluate motion plans based on how vulnerable they are to disturbances. We demonstrate and validate our method using extensive hardware experiments on a small fixed-wing airplane avoiding obstacles at high speed (âŒ12 mph), along with thorough simulation experiments of ground vehicle and quadrotor models navigating through cluttered environments. To our knowledge, these demonstrations constitute one of the first examples of provably safe and robust control for robotic systems with complex nonlinear dynamics that need to plan in real time in environments with complex geometric constraints
Controller Synthesis for Discrete-Time Polynomial Systems via Occupation Measures
Air Force/Lincoln Laboratory (Award 7000374874)Army Research Office (Award W911NF-15-1-0166
Sampling-Based Polytopic Trees for Approximate Optimal Control of Piecewise Affine Systems
ONR (Award N00014-17-1-2699