2 research outputs found

    Comparative Analysis of "Turbo", "Reduced-Turbo", "Flower" and "Semi-Turbo" Roundabout

    Get PDF
    A growing number of studies, presented in scientific and professional literature, point out a poor traffic safety characteristic of "standard" two-lane roundabouts, and lower capacity than expected. These problems are resolved in different ways in different countries; however, the most successful solution has proven to be reducing the number of conflict points. Lower number of conflict points is one of the characteristics of alternative (or unconventional or no-widespread) types of roundabouts. Alternative types of roundabout differ from "standard" two-lane roundabouts in one (or more) design elements, while the purpose of their implementation is also specific. This paper illustrates two established alternative types of roundabouts (turbo and flower roundabout), and two alternative types of roundabouts in development phase (reduced-turbo and semi-turbo roundabout), offering their detailed functional description, and comparison of their capacity and traffic safety characteristics. Comparative analyses of turbo, reduced-turbo, flower and semi-turbo roundabouts was made by evaluation approach based on simulation of traffic operating at four types of alternative design layouts, including exact geometric layout of the traffic site and the precise representation of traffic flows, with turning movements, through origin-destination matrixes. The capacity comparison was conducted by a software tool VISSIM, while the traffic safety comparison was made by a software tool SSAM. In traffic safety analyses, microsimulation was used to simulate traffic operations at various levels of traffic volume. Performance measures were obtained, including measures of traffic safety, based on conflicts estimated from trajectories generated in microsimulation. According to the results, level of traffic safety (as well as capacity) of analysed alternative types of roundabouts depends on traffic flow strength, and on numbers of right-hand and left-hand turning vehicles. Consequently, for different circumstances, there are different optimal alternative types of roundabouts

    The Surrogate Safety Appraisal of the Unconventional Elliptical and Turbo Roundabouts

    No full text
    Double-lane roundabouts have been created in many European countries over the past few centuries and are now characterized by an unsafe geometric development and by a low sustainability capacity or level. In this regard, new double-lane geometries have been implemented to overcome to these critical points. This article shows a comparison of two nonconventional double-lane roundabout schemes defined as elliptical and turbo. Considering this research on the unsafe and congested conditions for each road schemes at grade, the microsimulation approach allows comparing schemes of intersections not yet realized in order to be able to evaluate the critical issues. A symmetric traffic distribution and an identical vehicle mix for both design solutions are considered. The research was conducted considering two different double-lane roundabout-turbo roundabout and the elliptical roundabout. By comparing their geometry and technical elements, this article assumes that turbo roundabout due to its physical separating traffic lanes in the central circulatory carriageway will enable potentially better traffic safety conditions. This article has the following main goal: a comparison of traffic safety using VISSIM microsimulator and SSAM tools. The results can provide to show safety level on investigated scenario considering level of service (LOS) and also the possibility of obtaining time to collision (TTC) and postencroachment time (PET) through the use of surrogate parameters obtained by SSAM tool. In fact, the surrogate safety parameters allows evaluating the possible collision scenarios between them, according to the trajectories of the single vehicles. This assessment is useful in order to be able to evaluate by the local authorities which of the examined schemes can provide greater negativity in the construction and operation phase. Therefore this comparative analysis allows reducing, in the preliminary phase, possible security impacts and also economic ones for the community
    corecore