4 research outputs found

    Using elemental chemostratigraphy on Mid-Late Frasnian platform-top successions from the Lennard Shelf outcrops, Canning Basin, Western Australia.

    Get PDF
    High-resolution chronostratigraphic correlation using elemental chemostratigraphy in platform carbonates is typically difficult to achieve. Here, elemental chemostratigraphy is used to correlate between two platform-top, carbonate-dominated field sections from the narrow Lennard Shelf that existed on the NE margin of the Canning Basin, Western Australia, during the mid–late Frasnian. The correlation, constrained by magnetic polarity reversals and physical ground truthing, is based on recognition of distinctive cyclical ‘‘stacking patterns’’ defined by changes in concentrations of the trace element zirconium (Zr). Zr concentrations are controlled by the amount of the heavy mineral zircon in the sediments, which is derived from a terrigenous source and is diagenetically very stable. The stacking patterns in the lower part of the study sections display gradually upward-increasing values of Zr to a maximum, followed by an almost immediate fall to a minimum. In the upper part of the study interval, the cycles are more symmetrical, with both gradually increasing and decreasing portions. The point at which the change in Zr stacking pattern occurs in the two sections is synchronous and occurs in association with a supersequence maximum flooding surface. The correlation based on maximum and minimum Zr values throughout the two sections is demonstrated to be chronostratigraphic by comparison with correlations based upon paleomagnetism and physical ground truthing. When element ratios commonly used as provenance and paleoclimate proxies are plotted, the variations between closely spaced samples are greater than any systematic variations throughout the study intervals. Therefore, no isochemical chemozones can be defined, implying that during deposition of the study intervals, there were no long-lived changes in sediment provenance or paleoclimate that the elemental chemistry can detect. The work presented here shows that the standard approach of defining isochemical chemozones for chemostratigraphic correlation is not always appropriate. However, an approach using cyclical changes in elemental variables for chemostratigraphic correlation between two closely spaced sections is chronostratigraphically valid. The greater challenge is in application of the same approach to more widely spaced sections, potentially in different facies of a carbonate setting

    Upper Kellwasser carbon isotope excursion pre-dates the F–F boundary in the Upper Devonian Lennard shelf carbonate system, Canning Basin, Western Australia

    Get PDF
    Here we report four high-resolution carbon isotope records in addition to trace element data for the Frasnian–Famennian (F–F) boundary interval in the Lennard Shelf carbonate system of the Canning Basin, Western Australia. This region lacks the characteristic black shale horizons associated with the global Late Devonian Kellwasser extinction events, yet still exhibits a trend in carbon isotope character similar to what has been reported from elsewhere in the world (two positive δ13C excursions with ~3–4‰ amplitudes). Enrichments in select trace element ratios suggest that both excursions are related to periods of oxygen deprivation and perhaps increased biological productivity. Given the continuous and stratigraphically expanded nature of Lennard Shelf sections, together with high-density sampling constrained by both conodont biostratigraphy and magnetostratigraphy, we observe that the Upper Kellwasser isotope excursion (maximum δ13C values) and associated trace element enrichments occur distinctly lower than the F–F boundary level. These results have implications for the paleoenvironmental conditions leading up to the Late Devonian Mass Extinction in terms of ocean chemistry and circulation patterns. This data set allows for a rare, detailed look at the temporal relationship between the Kellwasser events and the F–F boundary and constrains the pattern of carbon isotope perturbations at the intra-zonal scale

    High-Resolution Late Devonian Magnetostratigraphy From the Canning Basin, Western Australia: A Re-Evaluation

    Get PDF
    Late Devonian time was a period of rapid upheaval in the Earth system, including climate change, sea level changes, widespread ocean anoxia, and the Frasnian-Famennian mass extinction; the cause(s) of these changes remain(s) uncertain. The Lennard Shelf of the Canning Basin in Western Australia contains carbonate reef sections spanning much of the Late Devonian Epoch and has been sampled for paleomagnetic analysis with studies by Hansma and colleagues in 2015 and Playton and colleagues in 2016. However, previous paleomagnetic directions were scattered and their use for magnetostratigraphy has been questioned. Here, rock magnetic data and magnetostratigraphy for a late Devonian drill-core from the Lennard Shelf were analyzed. Three magnetostratigraphic interpretations were made using different paleopoles that showed good correlation with each other and the earlier interpretations by Playton and colleagues in 2016. Additionally, the rock magnetic data revealed the samples contain various mixtures of detrital and diagenetic minerals, the former of which should be viable recorders of primary magnetic signatures. Even in samples with these detrital phases, paleomagnetic data were often noisy and produced ambiguous polarity assignments, likely due to the anomalously weak Devonian field. Because of this ambiguity and the absence of a robust paleopole, broader correlations for this critical time-period will be difficult without additional paleomagnetic data from the late Devonian Period. Expanded data for this interval could eventually shed light on the timing, causes, and rates of the Frasnian-Famennian mass extinction and other environmental shifts in the late Devonian Epoch

    Integrated stratigraphic correlation of Upper Devonian platform-to-basin carbonate sequences, Lennard Shelf, Canning Basin, Western Australia: advances in carbonate margin-to-slope sequence stratigraphy and stacking patterns

    Get PDF
    High-resolution, time-significant correlations are integral to meaningful stratigraphic frameworks in depositional systems, but may be difficult to achieve using traditional sequence stratigraphic or biostratigraphic approaches alone, particularly in geologically complex settings. In steep, reefal carbonate margin-to-slope systems, such correlations are essential to unravel shelf-to-basin transitions, characterize strike variability, and develop predictive sequence stratigraphic models – concepts which are currently poorly understood in these heterogeneous settings. The Canning Basin Chronostratigraphy Project (CBCP) integrates multiple independent datasets (including biostratigraphy, magnetostratigraphy, stable isotope chemostratigraphy, and sequence stratigraphy) extracted from Upper Devonian (Frasnian and Famennian) reefal platform exposures along the Lennard Shelf, Canning Basin, Western Australia. These were used to generate a well-constrained stratigraphic framework and shelf-to-basin composite reconstruction of the carbonate system. The resultant integrated framework allows for unprecedented analysis of carbonate margin-to-slope heterogeneity, depositional architecture, and sequence stratigraphy along the Lennard Shelf. Systems tract architecture, facies partitioning, and stacking patterns of margin to lower-slope environments were assessed for six composite-scale sequences that form part of a transgressive-to-regressive supersequence and span the Frasnian-Famennian (F-F) biotic crisis. Variations are apparent in margin styles, foreslope facies proportions, dominant resedimentation processes, downslope contributing sediment factories, and vertical rock successions, related to hierarchical accommodation signals and ecological changes associated with F-F boundary. We present these results in the form of carbonate margin-to-basin sequence stratigraphic models and associations that link seismic-scale architecture to fine-scale facies heterogeneity. These models provide a predictive foundation for characterization of steep-sided flanks of reefal carbonate platform systems that is useful for both industry and academia. This study emphasizes the utility of an integrated stratigraphic approach and the insights gained from better-constrained facies and stratal architecture analysis; insights that were not achievable with traditional sequence stratigraphic or biostratigraphic techniques alone
    corecore