2 research outputs found

    High dietary salt does not significantly affect plasma 25-hydroxyvitamin D concentrations of Sprague Dawley rats

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The Dahl salt-sensitive rat, but not the Dahl salt-resistant rat, develops hypertension and hypovitaminosis D when fed a high salt diet. Since the salt-sensitive rat and salt-resistant rat were bred from the Sprague Dawley rat, the aim of this research was to test the hypothesis that salt-resistant and Sprague Dawley rats would be similar in their vitamin D endocrine system response to high salt intake.</p> <p>Findings</p> <p>Sprague Dawley, salt-sensitive, and salt-resistant rats were fed high (80 g/kg, 8%) or low (3 g/kg, 3%) salt diets for three weeks. The blood pressure of Sprague Dawley rats increased from baseline to week 3 during both high and low salt intake and the mean blood pressure at week 3 of high salt intake was higher than that at week 3 of low salt intake (<it>P </it>< 0.05). Mean plasma 25-hydroxyvitamin D concentrations (marker of vitamin D status) of Sprague Dawley, salt-sensitive, and salt-resistant rats were similar at week 3 of low salt intake. Mean plasma 25-hydroxyvitamin D concentrations of Sprague Dawley and salt-resistant rats were unaffected by high salt intake, whereas the mean plasma 25-hydroxyvitamin D concentration of salt-sensitive rats at week 3 of high salt intake was only 20% of that at week 3 of low salt intake.</p> <p>Conclusions</p> <p>These data indicate that the effect of high salt intake on the vitamin D endocrine system of Sprague Dawley rats at week 3 was similar to that of salt-resistant rats. The salt-sensitive rat, thus, appears to be a more appropriate model than the Sprague Dawley rat for assessing possible effects of salt-sensitivity on vitamin D status of humans.</p
    corecore