4 research outputs found

    Preliminary numerical and experimental tests for the study of vibration signals in dry granular flows

    Get PDF
    Debris flows are one of the most important hazards in mountainous areas because of their paroxysmal nature, the high velocities, and energy carried by the transported material. The monitoring of these phenomena plays a relevant role in the prevention of the effects of these events. Among different possibilities, fiber optical sensors appear well-suited for this purpose thanks to their fair cheapness (with the exception of the interrogator), the robustness to electromagnetic interferences, the adaptability in extreme harsh conditions (no power supply is required), the possibility of locating the interrogator many kilometers far away from the monitored site, and the unique feature to provide very-dense multipoint distributed measurements along long distances. In this work, the vibro-acoustics signal produced by these phenomena has been focused as a possible source of information for the prediction of incipient movement, and the tracking of their path, velocity and thickness. Few literature works investigate these aspects, and for this reason, a preliminary laboratory and numerical campaign have been carried out with dry granular flume tests on an inclined chute. The discrete element method has been used to simulate the tests and to synthesize the signal measured on an instrumented mat along the channel. The grain shapes of the granular material used in simulations have been obtained by a photogrammetric tridimensional reconstruction. The force-time signal has been also analyzed in time-frequency domain in order to infer the features of the flow. The numerical activity has been preparatory for the experiments carried out by instrumenting the flume with an optical fiber distributed vibration sensing system

    Distributed acoustic sensing of debris flows in a physical model

    No full text
    We used a distributed acoustic sensing (DAS) system to monitor the evolution of debris flows in an inclined flume that was instrumented with approx. 800 m of fiber, wound in 20 coils acting as an array of coherent acoustic sensors. The analysis of the acquired signals confirmed the viability of DAS as a tool for debris flows monitoring
    corecore