65 research outputs found

    Functional links on coral reefs: urchins and triggerfishes, a cautionary tale

    Get PDF
    Urchins are ubiquitous components of coral reefs ecosystems, with significant roles in bioerosion and herbivory. By controlling urchin densities, triggerfishes have been identified as keystone predators. However, the functional linkages between urchins and triggerfishes, in terms of distributional patterns and concomitant effects on ecosystem processes, are not well understood, especially in relatively unexploited systems. To address this we censused urchins and triggerfishes on two cross-shelf surveys on the Great Barrier Reef (GBR) at the same times and locations. We also evaluated the role of urchins in bioerosion. Although urchin abundance and triggerfish biomass varied by 80% and nearly 900% across sites, respectively, this variability was driven primarily by shelf position with no evidence of top-down control on urchins by triggerfishes. Low urchin abundances meant urchins only played a minor role in bioerosion. We highlight the potential variability in functional links, and contributions to ecosystem processes, among regions

    Algal turf sediments on coral reefs: what's known and what's next

    Get PDF
    Algal turfs are likely to rise in prominence on coral reefs in the Anthropocene. In these ecosystems the sediments bound within algal turfs will shape ecosystem functions and the services humanity can obtain from reefs. However, while interest is growing in the role of algal turf sediments, studies remain limited. In this review we provide an overview of our knowledge to-date concerning algal turf sediments on coral reefs. Specifically, we highlight what algal turf sediments are, their role in key ecosystem processes, the potential importance of algal turf sediments on Anthropocene reefs, and key knowledge gaps for future research. The evidence suggests that the management of algal turf sediments will be critically important if we are to sustain key functions and services on highly-altered, Anthropocene coral reef configurations

    A functional perspective on the meaning of the term ‘herbivore’: patterns versus processes in coral reef fishes

    Get PDF
    Herbivorous fishes are a key functional group in coral reef ecosystems and have been the focus of a vast body of research. While substantial progress has been made in research, challenges persist, especially in respect to quantifying patterns versus processes. Despite this challenge being recognised over 40 years ago. To help clarify such challenges, and work towards solutions, in this perspective we explore how the definition of ‘herbivorous reef fishes’ precludes an easy translation between patterns of herbivore abundance and the process of herbivory. Indeed, if herbivorous fishes are defined as, a fish in which the diet is predominantly based on plant material, then this encompasses a diverse suite of fishes which all remove primary producers to varying extents and have markedly different impacts on reef functioning. Given this situation, we explore how our approaches to directly quantifying herbivory on reefs have progressed. We highlight how lessons learnt from macroalgal assays could be applied to the direct quantification of herbivory from algal turfs in the epilithic algal matrix (EAM); a community of primary producers that are invariably difficult to work with and quantify. Nevertheless, given the abundance of turfs on coral reefs, and their relative importance in herbivore dynamics, widespread process-based assessment of EAM herbivory represents an avenue for expanding future research. Recognising the difficulty of translating patterns in herbivore abundance to the process of herbivory, and an enhanced focus on EAM herbivory, will be necessary to comprehensively quantify the process of herbivory on Anthropocene coral reefs

    Benthic composition changes on coral reefs at global scales

    Get PDF
    Globally, ecosystems are being reconfigured by a range of intensifying human-induced stressors. Coral reefs are at the forefront of this environmental transformation, and if we are to secure their key ecosystem functions and services, it is important to understand the likely configuration of future reefs. However, the composition and trajectory of global coral reef benthic communities is currently unclear. Here our global dataset of 24,468 observations spanning 22 years (1997–2018) revealed that particularly marked declines in coral cover occurred in the Western Atlantic and Central Pacific. The data also suggest that high macroalgal cover, widely regarded as the major degraded state on coral reefs, is a phenomenon largely restricted to the Western Atlantic. At a global scale, the raw data suggest decreased average (± standard error of the mean) hard coral cover from 36 ± 1.4% to 19 ± 0.4% (during a period delineated by the first global coral bleaching event (1998) until the end of the most recent event (2017)) was largely associated with increased low-lying algal cover such as algal turfs and crustose coralline algae. Enhanced understanding of reef change, typified by decreased hard coral cover and increased cover of low-lying algal communities, will be key to managing Anthropocene coral reefs

    Subconscious biases in coral reef fish studies

    Get PDF
    In complex, diverse ecosystems, one is faced with an exceptionally challenging decision: which species to examine first and why? This raises the question: Is there evidence of subconscious biases in study species selection? Likewise, is there evidence of this bias in selecting methods, locations, and times? We addressed these questions by surveying the literature on the most diverse group of vertebrates (fishes) in an iconic high-diversity ecosystem (coral reefs). The evidence suggests that we select study species that are predominantly yellow. Reef fish studies also selectively examine fishes that are behaviorally bold and in warm, calm, attractive locations. Our findings call for a reevaluation of study species selection and methodological approaches, recognizing the potential for subconscious biases to drive selection for species that are attractive rather than important and for methods that give only a partial view of ecosystems. Given the challenges faced by high-diversity ecosystems, we may need to question our decision-making processes

    A 3D perspective on sediment accumulation in algal turfs: implications of coral reef flattening

    Get PDF
    Globally, coral reefs are being transformed by a suite of stressors, the foremost being climate change. Increasingly, it is expected that these reconfigured reef systems will emerge with lower-complexity and will be dominated by algal turfs. Understanding this new operating space is vital if we are to maintain the services, such as fishable biomass production, that reefs provide. However, the functionality of these systems appears to depend on the nature of the algal turfs themselves, which is in-turn, intimately linked to the sediments they contain. As reefs are losing complexity, we need to understand if, and to what extent, algal turf condition and complex reef structure are connected. To address this issue we took advantage of recent developments in 3D structure-from-motion technology to examine how complexity metrics (elevation and surface angle) related to the nature of algal turfs on a heavily climate-impacted coral reef. This represents a novel application of this technology in the context of coral reef ecosystems. We found that as both elevation and surface angle decreased, the nutritional value of the epilithic algal matrix also decreased while sediment accumulation increased. Furthermore, we showed that elevated surfaces were characterized by far shorter algal turfs, and are potentially herbivory hotspots, offering fertile grounds for further exploration of herbivory dynamics at sub-metre spatial scales. Synthesis. This study yields new insights into the operating-space of future reefs, and suggests that as reefs flatten, sediment accumulation is likely to increase even if sediment inputs remain unchanged, altering algal turfs fundamentally. Maintaining key services provided by climate-transformed, low-complexity algal turf-dominated reefs of the future, will depend on managing the complex interactions between herbivory, sediments, algal turfs and reef structural complexity

    Clarifying functional roles: algal removal by the surgeonfishes Ctenochaetus striatus and Acanthurus nigrofuscus

    Get PDF
    The lined bristletooth, Ctenochaetus striatus, and the brown surgeonfish, Acanthurus nigrofuscus, are among the most abundant surgeonfishes on Indo-Pacific coral reefs. Yet, the functional role of these species has been the focus of an ongoing debate lasting at least six decades. Specifically, to what extent are C. striatus herbivorous like the visually similar A. nigrofuscus? To address this question, we used natural feeding surfaces, covered with late successional stage reef-grown algal turfs, to examine turf algal removal by the two species. Surfaces exposed to C. striatus in laboratory experiments exhibited no significant reductions in turf length or area covered by turfing algae. In marked contrast, A. nigrofuscus reduced turf length by 51% and area covered by turfing algae by 15% in 1 h. The gut contents of specimens from the reef revealed that A. nigrofuscus predominantly ingests algae (the dominant item in 79.6-94.7% of gut content quadrats), while C. striatus ingests detritus and sediments (dominant in 99.6-100% of quadrats). Therefore, C. striatus ingests detritus and sediment, leaving mature algal turfs relatively intact, while A. nigrofuscus directly removes and ingests turf algae. The function of C. striatus differs from cropping herbivorous surgeonfishes such as A. nigrofuscus. On coral reefs, C. striatus brush detrital aggregates from algal turfs, removing microorganisms, organic detritus and inorganic sediment. Confusion over the functional role of C. striatus may stem from an inability to fit it into a single functional category

    Habitat zonation on coral reefs: Structural complexity, nutritional resources and herbivorous fish distributions

    Get PDF
    Distinct zonation of community assemblages among habitats is a ubiquitous feature of coral reefs. The distribution of roving herbivorous fishes (parrotfishes, surgeonfishes and rabbitfishes) is a particularly clear example, with the abundance of these fishes generally peaking in shallow-water, high-energy habitats, regardless of the biogeographic realm. Yet, our understanding of the factors which structure this habitat partitioning, especially with regards to different facets of structural complexity and nutritional resource availability, is limited. To address this issue, we used three-dimensional photogrammetry and structure-from-motion technologies to describe five components of structural complexity (rugosity, coral cover, verticality, refuge density and field-of-view) and nutritional resource availability (grazing surface area) among habitats and considered how these factors are related to herbivorous fish distributions. All complexity metrics (including coral cover) were highest on the slope and crest. Nutritional resource availability differed from this general pattern and peaked on the outerflat. Unexpectedly, when compared to the distribution of herbivorous fishes, none of the complexity metrics had a marked influence in the models. However, grazing surface area was a strong predictor of both the abundance and biomass of herbivorous fishes. The strong relationship between grazing surface area and herbivorous fish distributions indicates that nutritional resource availability may be one of the primary factors driving the distribution of roving herbivorous fishes. The lack of a relationship between complexity and herbivorous fishes, and a strong affinity of herbivorous fishes for low-complexity, algal turf-dominated outer-flat habitats, offers some cautious optimism that herbivory may be sustained on future, low-complexity, algal turf-dominated reef configurations

    Expansion of a colonial ascidian following consecutive mass coral bleaching at Lizard Island, Australia

    Get PDF
    Mass coral bleaching is challenging today's coral reefs. However, our understanding of dynamics in benthic space holders, following such disturbances, is limited. To address this, we quantified successional dynamics of the ascidian, Didemnum cf. molle using a series of temporally and spatially matched photoquadrats across both the 2016 and 2017 mass coral bleaching events on the Great Barrier Reef. Unlike corals, D. cf. molle appeared to flourish in the warm temperatures and rapidly expanded. Indeed, colony density increased nearly 6-fold over two years with one quadrat experiencing an increase of over 1000 ind. m⁻². However, this increase did not simply track the increase in space due to coral mortality, but may have benefitted from reduced predation or increased nutrient availability following mass coral mortality. This study highlights the potential for D. cf molle to expand under bleaching conditions and to become a more prominent component of future reef configurations

    Spatial mismatch in fish and coral loss following 2016 mass coral bleaching

    Get PDF
    Record-breaking temperatures between 2015 and 2016 led to unprecedented pan-tropical bleaching of scleractinian corals. On the Great Barrier Reef (GBR), the effects were most pronounced in the remote, northern region, where over 90% of reefs exhibited bleaching. Mass bleaching that results in widespread coral mortality represents a major disturbance event for reef organisms, including reef fishes. Using 133 replicate 1 m(2) quadrats, we quantified short-term changes in coral communities and spatially associated reef fish assemblages, at Lizard Island, Australia, in response to the 2016 mass bleaching event. Quadrats were spatially matched, permitting repeated sampling of fish and corals in the same areas: before, during and 6 months after mass bleaching. As expected, we documented a significant decrease in live coral cover. Subsequent decreases in fish abundance were primarily driven by coral-associated damselfishes. However, these losses, were relatively minor (37% decrease), especially compared to the magnitude of Acropora loss (>95% relative decrease). Furthermore, at a local, 1 m(2) scale, we documented a strong spatial mismatch between fish and coral loss. Post-bleaching fish losses were not highest in quadrats that experienced the greatest loss of live coral. Nor were fish losses associated with a proliferation of cyanobacteria. Several sites did, however, exhibit increases in fish abundance suggesting substantial spatial movements. These results challenge common assumptions and emphasize the need for caution when ascribing causality to observed patterns of fish loss at larger spatial scales. Our results highlight the potential for short-term resilience to climate change, in fishes, through local migration and habitat plasticity. (C) 2018 Elsevier B.V. All rights reserved
    corecore