11 research outputs found

    Effects of elevated [CO2 ] on maize defence against mycotoxigenic Fusarium verticillioides.

    Get PDF
    Maize is by quantity the most important C4 cereal crop; however, future climate changes are expected to increase maize susceptibility to mycotoxigenic fungal pathogens and reduce productivity. While rising atmospheric [CO2 ] is a driving force behind the warmer temperatures and drought, which aggravate fungal disease and mycotoxin accumulation, our understanding of how elevated [CO2 ] will effect maize defences against such pathogens is limited. Here we report that elevated [CO2 ] increases maize susceptibility to Fusarium verticillioides proliferation, while mycotoxin levels are unaltered. Fumonisin production is not proportional to the increase in F. verticillioides biomass, and the amount of fumonisin produced per unit pathogen is reduced at elevated [CO2 ]. Following F. verticillioides stalk inoculation, the accumulation of sugars, free fatty acids, lipoxygenase (LOX) transcripts, phytohormones and downstream phytoalexins is dampened in maize grown at elevated [CO2 ]. The attenuation of maize 13-LOXs and jasmonic acid production correlates with reduced terpenoid phytoalexins and increased susceptibility. Furthermore, the attenuated induction of 9-LOXs, which have been suggested to stimulate mycotoxin biosynthesis, is consistent with reduced fumonisin per unit fungal biomass at elevated [CO2 ]. Our findings suggest that elevated [CO2 ] will compromise maize LOX-dependent signalling, which will influence the interactions between maize and mycotoxigenic fungi

    Eavesdropping on Plant Volatiles by a Specialist Moth: Significance of Ratio and Concentration

    Get PDF
    We investigated the role that the ratio and concentration of ubiquitous plant volatiles play in providing host specificity for the diet specialist grape berry moth Paralobesia viteana (Clemens) in the process of locating its primary host plant Vitis sp. In the first flight tunnel experiment, using a previously identified attractive blend with seven common but essential components (“optimized blend”), we found that doubling the amount of six compounds singly [(E)- & (Z)-linalool oxides, nonanal, decanal, β-caryophyllene, or germacrene-D], while keeping the concentration of other compounds constant, significantly reduced female attraction (average 76% full and 59% partial upwind flight reduction) to the synthetic blends. However, doubling (E)-4,8-dimethyl 1,3,7-nonatriene had no effect on female response. In the second experiment, we manipulated the volatile profile more naturally by exposing clonal grapevines to Japanese beetle feeding. In the flight tunnel, foliar damage significantly reduced female landing on grape shoots by 72% and full upwind flight by 24%. The reduction was associated with two changes: (1) more than a two-fold increase in total amount of the seven essential volatile compounds, and (2) changes in their relative ratios. Compared to the optimized blend, synthetic blends mimicking the volatile ratio emitted by damaged grapevines resulted in an average of 87% and 32% reduction in full and partial upwind orientation, respectively, and the level of reduction was similar at both high and low doses. Taken together, these results demonstrate that the specificity of a ubiquitous volatile blend is determined, in part, by the ratio of key volatile compounds for this diet specialist. However, P. viteana was also able to accommodate significant variation in the ratio of some compounds as well as the concentration of the overall mixture. Such plasticity may be critical for phytophagous insects to successfully eavesdrop on variable host plant volatile signals

    A systematic review of clinical trials of pharmacological interventions for acute ischaemic stroke (1955-2008) that were completed, but not published in full

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>We assessed the prevalence, and potential impact of, trials of pharmacological agents for acute stroke that were completed but not published in full. Failure to publish trial data is to be deprecated as it sets aside the altruism of participants' consent to be exposed to the risks of experimental interventions, potentially biases the assessment of the effects of therapies, and may lead to premature discontinuation of research into promising treatments.</p> <p>Methods</p> <p>We searched the Cochrane Stroke Group's Specialised Register of Trials in June 2008 for completed trials of pharmacological interventions for acute ischaemic stroke, and searched MEDLINE and EMBASE (January 2007 - March 2009) for references to recent full publications. We assessed trial completion status from trial reports, online trials registers and correspondence with experts.</p> <p>Results</p> <p>We identified 940 trials. Of these, 125 (19.6%, 95% confidence interval 16.5-22.6) were completed but not published in full by the point prevalence date. They included 16,058 participants (16 trials had over 300 participants each) and tested 89 different interventions. Twenty-two trials with a total of 4,251 participants reported the number of deaths. In these trials, 636/4251 (15.0%) died.</p> <p>Conclusions</p> <p>Our data suggest that, at the point prevalence date, a substantial body of evidence that was of relevance both to clinical practice in acute stroke and future research in the field was not published in full. Over 16,000 patients had given informed consent and were exposed to the risks of therapy. Responsibility for non-publication lies with investigators, but pharmaceutical companies, research ethics committees, journals and governments can all encourage the timely publication of trial data.</p

    Behavioural response of the malaria vector <it>Anopheles gambiae</it> to host plant volatiles and synthetic blends

    Full text link
    Abstract Background Sugar feeding is critical for survival of malaria vectors and, although discriminative plant feeding previously has been shown to occur in Anopheles gambiae s.s., little is known about the cues mediating attraction to these plants. In this study, we investigated the role of olfaction in An. gambiae discriminative feeding behaviour. Methods Dual choice olfactometer assays were used to study odour discrimination by An. gambiae to three suspected host plants: Parthenium hysterophorus (Asteraceae), Bidens pilosa (Asteraceae) and Ricinus communis (Euphorbiaceae). Sugar content of the three plant species was determined by analysis of their trimethylsilyl derivatives by coupled gas chromatography–mass spectrometry (GC-MS) and confirmed with authentic standards. Volatiles from intact plants of the three species were collected on Super Q and analyzed by coupled GC-electroantennographic detection (GC-EAD) and GC-MS to identify electrophysiologically-active components whose identities were also confirmed with authentic standards. Active compounds and blends were formulated using dose–response olfactory bioassays. Responses of females were converted into preference indices and analyzed by chi-square tests. The amounts of common behaviourally-active components released by the three host plants were compared with one-way ANOVA. Results Overall, the sugar contents were similar in the two Asteraceae plants, P. hysterophorus and B. pilosa, but richer in R. communis. Odours released by P. hysterophorus were the most attractive, with those from B. pilosa being the least attractive to females in the olfactometer assays. Six EAD-active components identified were consistently detected by the antennae of adult females. The amounts of common antennally-active components released varied with the host plant, with the highest amounts released by P. hysterophorus. In dose–response assays, single compounds and blends of these components were attractive to females but to varying levels, with one of the blends recording a significantly attractive response from females when compared to volatiles released by either the most preferred plant, P. hysterophorus (χ2 = 5.23, df = 1, P P. hysterophorus. Conclusions Our results demonstrate that (a) a specific group of plant odours attract female An. gambiae (b) females use both qualitative and quantitative differences in volatile composition to associate and discriminate between different host plants, and (c) altering concentrations of individual EAD-active components in a blend provides a practical direction for developing effective plant-based lures for malaria vector management.</p

    Interactive Effects of Elevated [CO2] and Drought on the Maize Phytochemical Defense Response against Mycotoxigenic Fusarium verticillioides.

    Full text link
    Changes in climate due to rising atmospheric carbon dioxide concentration ([CO2]) are predicted to intensify episodes of drought, but our understanding of how these combined conditions will influence crop-pathogen interactions is limited. We recently demonstrated that elevated [CO2] alone enhances maize susceptibility to the mycotoxigenic pathogen, Fusarium verticillioides (Fv) but fumonisin levels remain unaffected. In this study we show that maize simultaneously exposed to elevated [CO2] and drought are even more susceptible to Fv proliferation and also prone to higher levels of fumonisin contamination. Despite the increase in fumonisin levels, the amount of fumonisin produced in relation to pathogen biomass remained lower than corresponding plants grown at ambient [CO2]. Therefore, the increase in fumonisin contamination was likely due to even greater pathogen biomass rather than an increase in host-derived stimulants. Drought did not negate the compromising effects of elevated [CO2] on the accumulation of maize phytohormones and metabolites. However, since elevated [CO2] does not influence the drought-induced accumulation of abscisic acid (ABA) or root terpenoid phytoalexins, the effects elevated [CO2] are negated belowground, but the stifled defense response aboveground may be a consequence of resource redirection to the roots

    Effects of elevated [ CO 2

    Full text link
    Maize is by quantity the most important C(4) cereal crop; however, future climate changes are expected to increase maize susceptibility to mycotoxigenic fungal pathogens and reduce productivity. While rising atmospheric [CO(2)] is a driving force behind the warmer temperatures and drought, which aggravate fungal disease and mycotoxin accumulation, our understanding of how elevated [CO(2)] will effect maize defences against such pathogens is limited. Here we report that elevated [CO(2)] increases maize susceptibility to Fusarium verticillioides proliferation, while mycotoxin levels are unaltered. Fumonisin production is not proportional to the increase in F. verticillioides biomass, and the amount of fumonisin produced per unit pathogen is reduced at elevated [CO(2)]. Following F. verticillioides stalk inoculation, the accumulation of sugars, free fatty acids, lipoxygenase (LOX) transcripts, phytohormones and downstream phytoalexins is dampened in maize grown at elevated [CO(2)]. The attenuation of maize 13-LOXs and jasmonic acid production correlates with reduced terpenoid phytoalexins and increased susceptibility. Furthermore, the attenuated induction of 9-LOXs, which have been suggested to stimulate mycotoxin biosynthesis, is consistent with reduced fumonisin per unit fungal biomass at elevated [CO(2)]. Our findings suggest that elevated [CO(2)] will compromise maize LOX-dependent signalling, which will influence the interactions between maize and mycotoxigenic fungi. Elevated [CO2] increases maize susceptibility to Fusarium verticillioides proliferation but mycotoxin levels are unaltered. The attenuation of maize 13-LOXs and JA production correlates with reduced terpenoid phytoalexins and increased susceptibility. Furthermore, the attenuated induction of 9-LOXs, which have been suggested to stimulate mycotoxin biosynthesis, is consistent with reduced fumonisin per unit fungal biomass at elevated [CO2]
    corecore