30 research outputs found

    An efficient and versatile approach to trust and reputation using hierarchical Bayesian modelling

    No full text
    In many dynamic open systems, autonomous agents must interact with one another to achieve their goals. Such agents may be self-interested and, when trusted to perform an action, may betray that trust by not performing the action as required. Due to the scale and dynamism of these systems, agents will often need to interact with other agents with which they have little or no past experience. Each agent must therefore be capable of assessing and identifying reliable interaction partners, even if it has no personal experience with them. To this end, we present HABIT, a Hierarchical And Bayesian Inferred Trust model for assessing how much an agent should trust its peers based on direct and third party information. This model is robust in environments in which third party information is malicious, noisy, or otherwise inaccurate. Although existing approaches claim to achieve this, most rely on heuristics with little theoretical foundation. In contrast, HABIT is based exclusively on principled statistical techniques: it can cope with multiple discrete or continuous aspects of trustee behaviour; it does not restrict agents to using a single shared representation of behaviour; it can improve assessment by using any observed correlation between the behaviour of similar trustees or information sources; and it provides a pragmatic solution to the whitewasher problem (in which unreliable agents assume a new identity to avoid bad reputation). In this paper, we describe the theoretical aspects of HABIT, and present experimental results that demonstrate its ability to predict agent behaviour in both a simulated environment, and one based on data from a real-world webserver domain. In particular, these experiments show that HABIT can predict trustee performance based on multiple representations of behaviour, and is up to twice as accurate as BLADE, an existing state-of-the-art trust model that is both statistically principled and has been previously shown to outperform a number of other probabilistic trust models

    A Hierarchical Bayesian Trust Model based on Reputation and Group Behaviour

    No full text
    In many systems, agents must rely on their peers to achieve their goals. However, when trusted to perform an action, an agent may betray that trust by not behaving as required. Agents must therefore estimate the behaviour of their peers, so that they may identify reliable interaction partners. To this end, we present a Bayesian trust model (HABIT) for assessing trust based on direct experience and (potentially unreliable) reputation. Although existing approaches claim to achieve this, most rely on heuristics with little theoretical foundation. In contrast, HABIT is based on principled statistical techniques; can be used with any representation of behaviour; and can assess trust based on observed similarities between groups of agents. In this paper, we describe the theoretical aspects of the model and present experimental results in which HABIT was shown to be up to twice as accurate at predicting trustee performance as an existing state-of-the-art trust model

    Factored Monte-Carlo tree search for coordinating UAVs in disaster response

    No full text
    The coordination of multiple Unmanned Aerial Vehicles (UAVs) to carry out surveys is a major challenge for emergency responders. In particular, UAVs have to fly over kilometre-scale areas while trying to discover casualties as quickly as possible. However, an increase in the availability of real-time data about a disaster from sources such as crowd reports or satellites presents a valuable source of information to drive the planning of UAV flight paths over a space in order to discover people who are in danger. Nevertheless challenges remain when planning over the very large action spaces that result. To this end, we introduce the survivor discovery problem and present as our solution, the first example of a factored coordinated Monte Carlo tree search algorithm to perform decentralised path planning for multiple coordinated UAVs. Our evaluation against standard benchmarks show that our algorithm, Co-MCTS, is able to find more casualties faster than standard approaches by 10% or more on simulations with real-world data from the 2010 Haiti earthquake

    Planning search and rescue missions for UAV teams

    No full text
    The coordination of multiple Unmanned Aerial Vehicles (UAVs) to carry out aerial surveys is a major challenge for emergency responders. In particular, UAVs have to fly over kilometre-scale areas while trying to discover casualties as quickly as possible. To aid in this process, it is desirable to exploit the increasing availability of data about a disaster from sources such as crowd reports, satellite remote sensing, or manned reconnaissance. In particular, such information can be a valuable resource to drive the planning of UAV flight paths over a space in order to discover people who are in danger. However challenges of computational tractability remain when planning over the very large action spaces that result. To overcome these, we introduce the survivor discovery problem and present as our solution, the first example of a continuous factored coordinated Monte Carlo tree search algorithm. Our evaluation against state of the art benchmarks show that our algorithm, Co-CMCTS, is able to localise more casualties faster than standard approaches by 7% or more on simulations with real-world data

    Agent-based virtual organisations for the Grid

    Get PDF
    The ability to create reliable, scalable virtual organisations (VOs) on demand in a dynamic, open and competitive environment is one of the challenges that underlie Grid computing. In response, in the CONOISE-G project, we are developing an infrastructure to support robust and resilient virtual organisation formation and operation. Specifically, CONOISE-G provides mechanisms to assure effective operation of agent-based VOs in the face of disruptive and potentially malicious entities in dynamic, open and competitive environments. In this paper, we describe the CONOISE-G system, outline its use in VO formation and perturbation, and review current work on dealing with unreliable information sources

    Coping with Inaccurate Reputation Sources: Experimental Analysis of a Probabilistic Trust Model

    No full text
    This research aims to develop a model of trust and reputation that will ensure good interactions amongst software agents in large scale open systems. The following are key drivers for our model: (1) agents may be self-interested and may provide false accounts of experiences with other agents if it is beneficial for them to do so; (2) agents will need to interact with other agents with which they have little or no past experience. Against this background, we have developed TRAVOS (Trust and Reputation model for Agentbased Virtual OrganisationS) which models an agent's trust in an interaction partner. Specifically, trust is calculated using probability theory taking account of past interactions between agents. When there is a lack of personal experience between agents, the model draws upon reputation information gathered from third parties. In this latter case, we pay particular attention to handling the possibility that reputation information may be inaccurate

    Collaborative online planning for automated victim search in disaster response

    No full text
    Collaboration is essential for effective performance by groups of robots in disaster response settings. Here we are particularly interested in heterogeneous robots that collaborate in complex scenarios with incomplete, dynamically changing information. In detail, we consider an automated victim search setting, where unmanned aerial vehicles (UAVs) with different capabilities work together to scan for mobile phones and find and provide information about possible victims near these phone locations. The state of the art for such collaboration is robot control based on independent planning for robots with different tasks and typically incorporates uncertainty with only a limited scope. In contrast, in this paper, we take into account complex relations between robots with different tasks. As a result, we create a joint, full-horizon plan for the whole robot team by optimising over the uncertainty of future information gain using an online planner with hindsight optimisation. This joint plan is also used for further optimisation of individual UAV paths based on the long-term plans of all robots. We evaluate our plannerā€™s performance in a realistic simulation environment based on a real disaster and find that our approach finds victims 25% faster compared to current state-of-the-art approaches
    corecore