230 research outputs found
A Transiting Jupiter Analog
Decadal-long radial velocity surveys have recently started to discover
analogs to the most influential planet of our solar system, Jupiter. Detecting
and characterizing these worlds is expected to shape our understanding of our
uniqueness in the cosmos. Despite the great successes of recent transit
surveys, Jupiter analogs represent a terra incognita, owing to the strong
intrinsic bias of this method against long orbital periods. We here report on
the first validated transiting Jupiter analog, Kepler-167e (KOI-490.02),
discovered using Kepler archival photometry orbiting the K4-dwarf KIC-3239945.
With a radius of , a low orbital eccentricity
() and an equilibrium temperature of K,
Kepler-167e bears many of the basic hallmarks of Jupiter. Kepler-167e is
accompanied by three Super-Earths on compact orbits, which we also validate,
leaving a large cavity of transiting worlds around the habitable-zone. With two
transits and continuous photometric coverage, we are able to uniquely and
precisely measure the orbital period of this post snow-line planet
( d), paving the way for follow-up of this mag
target.Comment: 14 pages, 10 figures. Accepted to ApJ. Posteriors available at
https://github.com/CoolWorlds/Kepler-167-Posterior
A Reply to: Large Exomoons unlikely around Kepler-1625 b and Kepler-1708 b
Recently, Heller & Hippke argued that the exomoon candidates Kepler-1625 b-i
and Kepler-1708 b-i were allegedly 'refuted'. In this Matters Arising, we
address these claims. For Kepler-1625 b, we show that their Hubble light curve
is identical to that previously published by the same lead author, in which the
moon-like dip was recovered. Indeed, our fits of their data again recover the
moon-like dip with improved residuals than that obtained by Heller & Hippke.
Their fits therefore appear to have somehow missed this deeper likelihood
maximum, as well producing apparently unconverged posteriors. Consequently,
their best-fitting moon is the same radius as the planet, Kepler-1625 b; a
radically different signal from that which was originally claimed. The authors
then inject this solution into the Kepler data and remark, as a point of
concern, how retrievals obtain much higher significances than originally
reported. However, this issue stems from the injection of a fundamentally
different signal. We demonstrate that their Hubble light curve exhibits ~20%
higher noise and discards 11% of the useful data, which compromises its ability
to recover the subtle signal of Kepler-1625 b-i. For Kepler-1708 b-i it was
claimed that the exomoon model's Bayes factor is highly sensitive to detrending
choices, yielding reduced evidence with a biweight filter versus the original
claim. We use their own i) detrended light curve and ii) biweight filter code
to investigate these claims. For both, we recover the original moon signal, to
even higher confidence than before. The discrepancy is explained by comparing
to their quoted fit metrics, where we again demonstrate that the Heller &
Hippke regression definitively missed the deeper likelihood maximum
corresponding to Kepler-1708 b-i. We conclude that both candidates remain
viable but certainly demand further observations.Comment: Under consideration by Nature Astronomy as Matters Arisin
Practical guidelines for monitoring and management of coagulopathy following tisagenlecleucel CAR T-cell therapy
Cytokine release syndrome (CRS) is a systemic inflammatory response associated with chimeric antigen receptor T-cell (CAR-T) therapies. In severe cases, CRS can be associated with coagulopathy and hypofibrinogenemia. We present our global multicenter experience with CRS-associated coagulopathy after tisagenlecleucel therapy in 137 patients with relapsed or refractory B-cell acute lymphoblastic leukemia from the ELIANA and ENSIGN trials. These trials included clinical guidelines for fibrinogen replacement during CRS-associated coagulopathy. Hypofibrinogenemia requiring replacement was observed only in patients with severe CRS. A higher percentage of patients who required replacement were <10 years old, compared with those who did not require replacement. Twenty-three patients received replacement for hypofibrinogenemia (<1.5 g/L); 9 of them developed marked hypofibrinogenemia (<1 g/L). Very low fibrinogen levels (<1 g/L) were documented in patients before maximal CRS (n = 1), during maximal CRS (n = 7), and at CRS improvement (n = 1). Although hypofibrinogenemia was the most clinically significant coagulopathy, some patients also developed prolonged prothrombin time and activated partial thromboplastin time and increased international normalized ratio, further increasing the risk of bleeding. Hypofibrinogenemia was effectively managed using fibrinogen concentrate or cryoprecipitate replacement; severe (grade 4) bleeding events were rare (n = 2). CRS-associated coagulopathy with hypofibrinogenemia is manageable according to empiric guidelines of fibrinogen replacement for CAR-T trials. Fibrinogen concentrate should be used when cryoprecipitate is not reliably available. Monitoring fibrinogen levels in patients with moderate or severe CRS is essential for avoiding potentially fatal bleeding events
A Transiting Jupiter analog
Decadal-long radial velocity surveys have recently started to discover analogs to the most influential planet of our solar system, Jupiter. Detecting and characterizing these worlds is expected to shape our understanding of our uniqueness in the cosmos. Despite the great successes of recent transit surveys, Jupiter analogs represent a terra incognita, owing to the strong intrinsic bias of this method against long orbital periods. We here report on the first validated transiting Jupiter analog, Kepler-167e (KOI-490.02), discovered using Kepler archival photometry orbiting the K4-dwarf KIC-3239945. With a radius of , a low orbital eccentricity (), and an equilibrium temperature of K, Kepler-167e bears many of the basic hallmarks of Jupiter. Kepler-167e is accompanied by three Super-Earths on compact orbits, which we also validate, leaving a large cavity of transiting worlds around the habitable-zone. With two transits and continuous photometric coverage, we are able to uniquely and precisely measure the orbital period of this post snow-line planet (1071.2323 ± 0.0006d), paving the way for follow-up of this K = 11.8 mag target
Mammalian Target of Rapamycin (mTOR) Activity Dependent Phospho-Protein Expression in Childhood Acute Lymphoblastic Leukemia (ALL)
Modern treatment strategies have improved the prognosis of childhood ALL; however, treatment still fails in 25–30% of
patients. Further improvement of treatment may depend on the development of targeted therapies. mTOR kinase, a central
mediator of several signaling pathways, has recently attracted remarkable attention as a potential target in pediatric ALL.
However, limited data exists about the activity of mTOR. In the present study, the amount of mTOR activity dependent
phospho-proteins was characterized by ELISA in human leukemia cell lines and in lymphoblasts from childhood ALL
patients (n = 49). Expression was measured before and during chemotherapy and at relapses. Leukemia cell lines exhibited
increased mTOR activity, indicated by phospho-S6 ribosomal protein (p-S6) and phosphorylated eukaryotic initiation factor
4E binding protein (p-4EBP1). Elevated p-4EBP1 protein levels were detected in ALL samples at diagnosis; efficacy of
chemotherapy was followed by the decrease of mTOR activity dependent protein phosphorylation. Optical density (OD) for
p-4EBP1 (ELISA) was significantly higher in patients with poor prognosis at diagnosis, and in the samples of relapsed
patients. Our results suggest that measuring mTOR activity related phospho-proteins such as p-4EBP1 by ELISA may help to
identify patients with poor prognosis before treatment, and to detect early relapses. Determining mTOR activity in leukemic
cells may also be a useful tool for selecting patients who may benefit from future mTOR inhibitor treatments
JAK/STAT pathway inhibition overcomes IL7-induced glucocorticoid resistance in a subset of human T-cell acute lymphoblastic leukemias
While outcomes for children with T-cell acute lymphoblastic leukemia (T-ALL) have improved dramatically, survival rates for patients with relapsed/refractory disease remain dismal. Prior studies indicate that glucocorticoid (GC) resistance is more common than resistance to other chemotherapies at relapse. In addition, failure to clear peripheral blasts during a prednisone prophase correlates with an elevated risk of relapse in newly diagnosed patients. Here we show that intrinsic GC resistance is present at diagnosis in early thymic precursor (ETP) T-ALLs as well as in a subset of non-ETP T-ALLs. GC-resistant non-ETP T-ALLs are characterized by strong induction of JAK/STAT signaling in response to interleukin-7 (IL7) stimulation. Removing IL7 or inhibiting JAK/STAT signaling sensitizes these T-ALLs, and a subset of ETP T-ALLs, to GCs. The combination of the GC dexamethasone and the JAK1/2 inhibitor ruxolitinib altered the balance between pro- and anti-apoptotic factors in samples with IL7-dependent GC resistance, but not in samples with IL7-independent GC resistance. Together, these data suggest that the addition of ruxolitinib or other inhibitors of IL7 receptor/JAK/STAT signaling may enhance the efficacy of GCs in a biologically defined subset of T-ALL
Immunological characterization and transcription profiling of peripheral blood (PB) monocytes in children with autism spectrum disorders (ASD) and specific polysaccharide antibody deficiency (SPAD): case study
<p>Abstract</p> <p>Introduction</p> <p>There exists a small subset of children with autism spectrum disorders (ASD) characterized by fluctuating behavioral symptoms and cognitive skills following immune insults. Some of these children also exhibit specific polysaccharide antibody deficiency (SPAD), resulting in frequent infection caused by encapsulated organisms, and they often require supplemental intravenous immunoglobulin (IVIG) (ASD/SPAD). This study assessed whether these ASD/SPAD children have distinct immunological findings in comparison with ASD/non-SPAD or non-ASD/SPAD children.</p> <p>Case description</p> <p>We describe 8 ASD/SPAD children with worsening behavioral symptoms/cognitive skills that are triggered by immune insults. These ASD/SPAD children exhibited delayed type food allergy (5/8), treatment-resistant seizure disorders (4/8), and chronic gastrointestinal (GI) symptoms (5/8) at high frequencies. Control subjects included ASD children without SPAD (N = 39), normal controls (N = 37), and non-ASD children with SPAD (N = 12).</p> <p>Discussion and Evaluation</p> <p>We assessed their innate and adaptive immune responses, by measuring the production of pro-inflammatory and counter-regulatory cytokines by peripheral blood mononuclear cells (PBMCs) in responses to agonists of toll like receptors (TLR), stimuli of innate immunity, and T cell stimulants. Transcription profiling of PB monocytes was also assessed. ASD/SPAD PBMCs produced less proinflammatory cytokines with agonists of TLR7/8 (IL-6, IL-23), TLR2/6 (IL-6), TLR4 (IL-12p40), and without stimuli (IL-1ß, IL-6, and TNF-α) than normal controls. In addition, cytokine production of ASD/SPAD PBMCs in response to T cell mitogens (IFN-γ, IL-17, and IL-12p40) and candida antigen (Ag) (IL-10, IL-12p40) were less than normal controls. ASD/non-SPAD PBMDs revealed similar results as normal controls, while non-ASD/SPAD PBMCs revealed lower production of IL-6, IL-10 and IL-23 with a TLR4 agonist. Only common features observed between ASD/SPAD and non-ASD/SPAD children is lower IL-10 production in the absence of stimuli. Transcription profiling of PB monocytes revealed over a 2-fold up (830 and 1250) and down (653 and 1235) regulation of genes in ASD/SPAD children, as compared to normal (N = 26) and ASD/non-SPAD (N = 29) controls, respectively. Enriched gene expression of TGFBR (p < 0.005), Notch (p < 0.01), and EGFR1 (p < 0.02) pathways was found in the ASD/SPAD monocytes as compared to ASD/non-SPAD controls.</p> <p>Conclusions</p> <p>The Immunological findings in the ASD/SPAD children who exhibit fluctuating behavioral symptoms and cognitive skills cannot be solely attributed to SPAD. Instead, these findings may be more specific for ASD/SPAD children with the above-described clinical characteristics, indicating a possible role of these immune abnormalities in their neuropsychiatric symptoms.</p
Simultaneous Inhibition of mTOR-Containing Complex 1 (mTORC1) and MNK Induces Apoptosis of Cutaneous T-Cell Lymphoma (CTCL) Cells
BACKGROUND: mTOR kinase forms the mTORC1 complex by associating with raptor and other proteins and affects a number of key cell functions. mTORC1 activates p70S6kinase 1 (p70S6K1) and inhibits 4E-binding protein 1 (4E-BP1). In turn, p70S6K1 phosphorylates a S6 protein of the 40S ribosomal subunit (S6rp) and 4E-BP1, with the latter negatively regulating eukaryotic initiation factor 4E (eIF-4E). MNK1 and MNK2 kinases phosphorylate and augment activity of eIF4E. Rapamycin and its analogs are highly specific, potent, and relatively non-toxic inhibitors of mTORC1. Although mTORC1 activation is present in many types of malignancies, rapamycin-type inhibitors shows relatively limited clinical efficacy as single agents. Initially usually indolent, CTCL displays a tendency to progress to the aggressive forms with limited response to therapy and poor prognosis. Our previous study (M. Marzec et al. 2008) has demonstrated that CTCL cells display mTORC1 activation and short-term treatment of CTCL-derived cells with rapamycin suppressed their proliferation and had little effect on the cell survival. METHODS: Cells derived from CTCL were treated with mTORC1 inhibitor rapamycin and MNK inhibitor and evaluated for inhibition of the mTORC1 signaling pathway and cell growth and survival. RESULTS: Whereas the treatment with rapamycin persistently inhibited mTORC1 signaling, it suppressed only partially the cell growth. MNK kinase mediated the eIF4E phosphorylation and inhibition or depletion of MNK markedly suppressed proliferation of the CTCL cells when combined with the rapamycin-mediated inhibition of mTORC1. While MNK inhibition alone mildly suppressed the CTCL cell growth, the combined MNK and mTORC1 inhibition totally abrogated the growth. Similarly, MNK inhibitor alone displayed a minimal pro-apoptotic effect; in combination with rapamycin it triggered profound cell apoptosis. CONCLUSIONS: These findings indicate that the combined inhibition of mTORC1 and MNK may prove beneficial in the treatment of CTCL and other malignancies
- …