288 research outputs found

    Numerical earthquake models of the 2013 Nantou, Taiwan, earthquake series: Characteristics of source rupture processes, strong ground motions and their tectonic implication

    Get PDF
    On 27 March and 2 June 2013, two large earthquakes with magnitudes of ML 6.2 and ML 6.5, named the Nantou earthquake series, struck central Taiwan. These two events were located at depths of 15–20 km, which implied that the mid-crust of central Taiwan is an active seismogenic area even though the subsurface structures have not been well established. To determine the origins of the Nantou earthquake series, we investigated both the rupture processes and seismic wave propagations by employing inverse and forward numerical simulation techniques. Source inversion results indicated that one event ruptured from middle to shallow crust in the northwest direction, while the other ruptured towards the southwest. Simulations of 3-D wave propagation showed that the rupture characteristics of the two events result in distinct directivity effects with different amplified shaking patterns. From the results of numerical earthquake modeling, we deduced that the occurrence of the Nantou earthquake series may be related to stress release from the easternmost edge of a preexistent strong basement in central Taiwan

    Modelling of pulse-like velocity ground motion during the 2018 M_w 6.3 Hualien earthquake, Taiwan

    Get PDF
    The 2018 February 6 M_w 6.3 Hualien earthquake caused severe localized damage in Hualien City, located 20 km away from the epicentre. The damage was due to strong (>70 cm s⁻¹) and sharp (duration ∼2.5 s) velocity pulses. The observed peak ground-motion velocity in Hualien City symmetrically decays with distance from the nearby Milun fault. Waveforms observed on the opposite sides of the fault show reversed polarity on the vertical and N–S components while the E–W component is almost identical. None of the published finite-fault slip models can explain the spatially highly localized large velocity pulses. In this study, we show that an M_w 5.9 strike-slip subevent on the Milun fault at 2.5 km depth, rupturing from north to south at ∼0.9Vs speed, combined with site effects caused by surficial layers with low S-wave speed, can explain the velocity pulses observed at the dense strong-motion network stations. This subevent contributes only 25 per cent of the total moment of the 2018 Hualien earthquake, suggesting that a small local slip patch near a metropolis can dominate the local hazard. Our result strongly suggests that seismic hazard assessments should consider large ground-motion variabilities caused by directivity and site effects, as observed in the 2018 Hualien earthquake

    Improving Success Rates of Percutaneous Coronary Intervention for Chronic Total Occlusion at a Rural Hospital in East Taiwan

    Get PDF
    SummaryBackgroundWe aimed to report the results of percutaneous coronary intervention for chronic total occlusion (CTO) in a remote hospital of southeast Taiwan that does not have on-site coronary artery bypass graft support and has insufficient medical resources.MethodsFrom 2006 to 2009, we identified 96 patients who underwent percutaneous coronary intervention and whose coronary angiogram showed CTO lesions. On-site cardiovascular surgeons were unavailable from 2006 to 2009.ResultsThe success rate (test for trend, p = 0.02) and numbers of guidewires used (test for trend, p = 0.59) significantly increased from 2006 to 2009, and the procedural time reduced significantly (test for trend, p = 0.001). The volume of contrast media injected decreased, although this result was not statistically significant (p = 0.70).ConclusionOur experience in managing CTO lesions substantially improved and the procedural time reduced over 4 years, even when constrained by a relative shortage of medical resources

    A strong-motion hot spot of the 2016 Meinong, Taiwan, earthquake (M_w = 6.4)

    Get PDF
    Despite a moderate magnitude, M_w = 6.4, the 5 February 2016 Meinong, Taiwan, earthquake caused significant damage in Tainan City and the surrounding areas. Several seismograms display an impulsive S-wave velocity pulse with an amplitude of about 1 m s-1, which is similar to large S-wave pulses recorded for the past several larger damaging earthquakes, such as the 1995 Kobe, Japan, earthquake (M_w = 6.9) and the 1994 Northridge, California, earthquake (M_w = 6.7). The observed PGV in the Tainan area is about 10 times larger than the median PGV of M_w = 6.4 crustal earthquakes in Taiwan. We investigate the cause of the localized strong ground motions. The peak-to-peak ground-motion displacement at the basin sites near Tainan is about 35 times larger than that at a mountain site with a similar epicentral distance. At some frequency bands (0.9 - 1.1 Hz), the amplitude ratio is as large as 200. Using the focal mechanism of this earthquake, typical “soft” and “hard” crustal structures, and directivity inferred from the observed waveforms and the slip distribution, we show that the combined effect yields an amplitude ratio of 17 to 34. The larger amplitude ratios at higher frequency bands can be probably due to the effects of complex 3-D basin structures. The result indicates that even from a moderate event, if these effects simultaneously work together toward amplifying ground motions, the extremely large ground motions as observed in Tainan can occur. Such occurrences should be taken into consideration in hazard mitigation measures in the place with frequent moderate earthquakes

    Flexible Electronics Sensors for Tactile Multi-Touching

    Get PDF
    Flexible electronics sensors for tactile applications in multi-touch sensing and large scale manufacturing were designed and fabricated. The sensors are based on polyimide substrates, with thixotropy materials used to print organic resistances and a bump on the top polyimide layer. The gap between the bottom electrode layer and the resistance layer provides a buffer distance to reduce erroneous contact during large bending. Experimental results show that the top membrane with a bump protrusion and a resistance layer had a large deflection and a quick sensitive response. The bump and resistance layer provided a concentrated von Mises stress force and inertial force on the top membrane center. When the top membrane had no bump, it had a transient response delay time and took longer to reach steady-state. For printing thick structures of flexible electronics sensors, diffusion effects and dimensional shrinkages can be improved by using a paste material with a high viscosity. Linear algorithm matrixes with Gaussian elimination and control system scanning were used for multi-touch detection. Flexible electronics sensors were printed with a resistance thickness of about 32 μm and a bump thickness of about 0.2 mm. Feasibility studies show that printing technology is appropriate for large scale manufacturing, producing sensors at a low cost

    Establishment of a Knock-In Mouse Model with the SLC26A4 c.919-2A>G Mutation and Characterization of Its Pathology

    Get PDF
    Recessive mutations in the SLC26A4 gene are a common cause of hereditary hearing impairment worldwide. Previous studies have demonstrated that different SLC26A4 mutations may have different pathogenetic mechanisms. In the present study, we established a knock-in mouse model (i.e., Slc26a4tm1Dontuh/tm1Dontuh mice) homozygous for the c.919-2A>G mutation, which is a common mutation in East Asians. Mice were then subjected to audiologic assessment, a battery of vestibular evaluations, and inner ear morphological studies. All Slc26a4tm1Dontuh/tm1Dontuh mice revealed profound hearing loss, whereas 46% mice demonstrated pronounced head tilting and circling behaviors. There was a significant difference in the vestibular performance between wild-type and Slc26a4tm1Dontuh/tm1Dontuh mice, especially those exhibiting circling behavior. Inner ear morphological examination of Slc26a4tm1Dontuh/tm1Dontuh mice revealed an enlarged endolymphatic duct, vestibular aqueduct and sac, atrophy of stria vascularis, deformity of otoconia in the vestibular organs, consistent degeneration of cochlear hair cells, and variable degeneration of vestibular hair cells. Audiologic and inner ear morphological features of Slc26a4tm1Dontuh/tm1Dontuh mice were reminiscent of those observed in humans. These features were also similar to those previously reported in both knock-out Slc26a4−/− mice and Slc26a4loop/loop mice with the Slc26a4 p.S408F mutation, albeit the severity of vestibular hair cell degeneration appeared different among the three mouse strains

    GT-repeat polymorphism in the heme oxygenase-1 gene promoter and the risk of carotid atherosclerosis related to arsenic exposure

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Arsenic is a strong stimulus of heme oxygenase (HO)-1 expression in experimental studies in response to oxidative stress caused by a stimulus. A functional GT-repeat polymorphism in the HO-1 gene promoter was inversely correlated to the development of coronary artery disease in diabetics and development of restenosis following angioplasty in patients. The role of this potential vascular protective factor in carotid atherosclerosis remains unclear. We previously reported a graded association of arsenic exposure in drinking water with an increased risk of carotid atherosclerosis. In this study, we investigated the relationship between HO-1 genetic polymorphism and the risk of atherosclerosis related to arsenic.</p> <p>Methods</p> <p>Three-hundred and sixty-seven participants with an indication of carotid atherosclerosis and an additional 420 participants without the indication, which served as the controls, from two arsenic exposure areas in Taiwan, a low arsenic-exposed Lanyang cohort and a high arsenic-exposed LMN cohort, were studied. Carotid atherosclerosis was evaluated using a duplex ultrasonographic assessment of the extracranial carotid arteries. Allelic variants of (GT)n repeats in the 5'-flanking region of the HO-1 gene were identified and grouped into a short (S) allele (< 27 repeats) and long (L) allele (≥ 27 repeats). The association of atherosclerosis and the HO-1 genetic variants was assessed by a logistic regression analysis, adjusted for cardiovascular risk factors.</p> <p>Results</p> <p>Analysis results showed that arsenic's effect on carotid atherosclerosis differed between carriers of the class S allele (OR 1.39; 95% CI 0.86-2.25; <it>p </it>= 0.181) and non-carriers (OR 2.65; 95% CI 1.03-6.82; <it>p </it>= 0.044) in the high-exposure LMN cohort. At arsenic exposure levels exceeding 750 μg/L, difference in OR estimates between class S allele carriers and non-carriers was borderline significant (<it>p </it>= 0.051). In contrast, no such results were found in the low-exposure Lanyang cohort.</p> <p>Conclusions</p> <p>This exploratory study suggests that at a relatively high level of arsenic exposure, carriers of the short (GT)n allele (< 27 repeats) in the HO-1 gene promoter had a lower probability of developing carotid atherosclerosis than non-carriers of the allele after long-term arsenic exposure via ground water. The short (GT)n repeat in the HO-1 gene promoter may provide protective effects against carotid atherosclerosis in individuals with a high level of arsenic exposure.</p

    A strong-motion hot spot of the 2016 Meinong, Taiwan, earthquake (M_w = 6.4)

    Get PDF
    Despite a moderate magnitude, M_w = 6.4, the 5 February 2016 Meinong, Taiwan, earthquake caused significant damage in Tainan City and the surrounding areas. Several seismograms display an impulsive S-wave velocity pulse with an amplitude of about 1 m s-1, which is similar to large S-wave pulses recorded for the past several larger damaging earthquakes, such as the 1995 Kobe, Japan, earthquake (M_w = 6.9) and the 1994 Northridge, California, earthquake (M_w = 6.7). The observed PGV in the Tainan area is about 10 times larger than the median PGV of M_w = 6.4 crustal earthquakes in Taiwan. We investigate the cause of the localized strong ground motions. The peak-to-peak ground-motion displacement at the basin sites near Tainan is about 35 times larger than that at a mountain site with a similar epicentral distance. At some frequency bands (0.9 - 1.1 Hz), the amplitude ratio is as large as 200. Using the focal mechanism of this earthquake, typical “soft” and “hard” crustal structures, and directivity inferred from the observed waveforms and the slip distribution, we show that the combined effect yields an amplitude ratio of 17 to 34. The larger amplitude ratios at higher frequency bands can be probably due to the effects of complex 3-D basin structures. The result indicates that even from a moderate event, if these effects simultaneously work together toward amplifying ground motions, the extremely large ground motions as observed in Tainan can occur. Such occurrences should be taken into consideration in hazard mitigation measures in the place with frequent moderate earthquakes

    A strong-motion hot spot of the 2016 Meinong, Taiwan, earthquake (Mw = 6.4)

    Full text link
    Despite a moderate magnitude, Mw = 6.4, the 5 February 2016 Meinong, Taiwan, earthquake caused significant damage in Tainan City and the surrounding areas. Several seismograms display an impulsive S-wave velocity pulse with an amplitude of about 1 m s-1, which is similar to large S-wave pulses recorded for the past several larger damaging earthquakes, such as the 1995 Kobe, Japan, earthquake (Mw = 6.9) and the 1994 Northridge, California, earthquake (Mw = 6.7). The observed PGV in the Tainan area is about 10 times larger than the median PGV of Mw = 6.4 crustal earthquakes in Taiwan. We investigate the cause of the localized strong ground motions. The peak-to-peak ground-motion displacement at the basin sites near Tainan is about 35 times larger than that at a mountain site with a similar epicentral distance. At some frequency bands (0.9 - 1.1 Hz), the amplitude ratio is as large as 200. Using the focal mechanism of this earthquake, typical “soft” and “hard” crustal structures, and directivity inferred from the observed waveforms and the slip distribution, we show that the combined effect yields an amplitude ratio of 17 to 34. The larger amplitude ratios at higher frequency bands can be probably due to the effects of complex 3-D basin structures. The result indicates that even from a moderate event, if these effects simultaneously work together toward amplifying ground motions, the extremely large ground motions as observed in Tainan can occur. Such occurrences should be taken into consideration in hazard mitigation measures in the place with frequent moderate earthquakes
    corecore