9 research outputs found

    The XGIS instrument on-board THESEUS: the detection plane and on-board electronics

    Full text link
    The X and Gamma Imaging Spectrometer instrument on-board the THESEUS mission (selected by ESA in the framework of the Cosmic Vision M5 launch opportunity, currently in phase A) is based on a detection plane composed of several thousands of single active elements. Each element comprises a 4.5x4.5x30 mm 3 CsI(Tl) scintillator bar, optically coupled at both ends to Silicon Drift Detectors (SDDs). The SDDs acts both as photodetectors for the scintillation light and as direct X-ray sensors. In this paper the design of the XGIS detection plane is reviewed, outlining the strategic choices in terms of modularity and redundancy of the system. Results on detector-electronics prototypes are also described. Moreover, the design and development of the low-noise front-end electronics is presented, emphasizing the innovative architectural design based on custom-designed Application-Specific Integrated Circuits (ASICs).Comment: Proceedings of the SPIE 2020, paper 11444-27

    The wide field monitor onboard the Chinese-European x-ray mission eXTP

    No full text
    The eXTP (enhanced X-ray Timing and Polarimetry) mission is a major project of the Chinese Academy of Sciences (CAS), with a large involvement of Europe. The scientific payload of eXTP includes four instruments: the SFA (Spectroscopy Focusing Array) and the PFA (Polarimetry Focusing Array) - led by China - the LAD (Large Area Detector) and the WFM (Wide Field Monitor) - led by Europe (Italy and Spain). They offer a unique simultaneous wide-band X-ray timing and polarimetry sensitivity. The WFM is a wide field X-ray monitor instrument in the 2-50 keV energy range, consisting of an array of six coded mask cameras with a field of view of 180Âşx90Âşat an angular resolution of 5 arcmin and 4 silicon drift detectors in each camera. Its unprecedented combination of large field of view and imaging down to 2 keV will allow eXTP to make important discoveries of the variable and transient X-ray sky and is essential in detecting transient black holes, that are part of the primary science goals of eXTP, so that they can be promptly followed up with other instruments on eXTP and elsewhere

    The enhanced x-ray timing and polarimetry mission – eXTP: an update on its scientific cases, mission profile and development status

    No full text
    The enhanced x-ray timing and polarimetry mission (eXTP) is a flagship observatory for x-ray timing, spectroscopy and polarimetry developed by an international consortium. Thanks to its very large collecting area, good spectral resolution and unprecedented polarimetry capabilities, eXTP will explore the properties of matter and the propagation of light in the most extreme conditions found in the universe. eXTP will, in addition, be a powerful x-ray observatory. The mission will continuously monitor the x-ray sky, and will enable multi-wavelength and multi-messenger studies. The mission is currently in phase B, which will be completed in the middle of 2022
    corecore