Recently we have evaluated the matrix elements ,whereO={1,\beta, i\mathbf{\alpha n}\beta} arethestandardDiracmatrixoperatorsandtheangularbracketsdenotethequantum−mechanicalaveragefortherelativisticCoulombproblem,intermsofgeneralizedhypergeometricfunctions_{3}F_{2}(1) $ for all suitable powers and established two sets of
Pasternack-type matrix identities for these integrals. The corresponding
Kramers--Pasternack three-term vector recurrence relations are derived here.Comment: 12 pages, no figures Will appear as it is in Journal of Physics B:
Atomic, Molecular and Optical Physics, Special Issue on Hight Presicion
Atomic Physic