4 research outputs found

    Relativistic Kramers-Pasternack Recurrence Relations

    Full text link
    Recently we have evaluated the matrix elements ,where where O ={1,\beta, i\mathbf{\alpha n}\beta} arethestandardDiracmatrixoperatorsandtheangularbracketsdenotethequantum−mechanicalaveragefortherelativisticCoulombproblem,intermsofgeneralizedhypergeometricfunctions are the standard Dirac matrix operators and the angular brackets denote the quantum-mechanical average for the relativistic Coulomb problem, in terms of generalized hypergeometric functions _{3}F_{2}(1) $ for all suitable powers and established two sets of Pasternack-type matrix identities for these integrals. The corresponding Kramers--Pasternack three-term vector recurrence relations are derived here.Comment: 12 pages, no figures Will appear as it is in Journal of Physics B: Atomic, Molecular and Optical Physics, Special Issue on Hight Presicion Atomic Physic
    corecore