409 research outputs found

    Ac Susceptibility and Static Magnetization Measurements of CeRu2_2Si2_2 at Small Magnetic Fields and Ultra Low Temperatures

    Get PDF
    The magnetic properties of CeRu2_2Si2_2 at microkelvin temperatures (down to 170 μ\muK) and ultra small magnetic fields (0.02∼6.210.02\sim6.21 mT) are investigated experimentally for the first time. The simultaneously measured ac susceptibility and static magnetization show neither evidence of the magnetic ordering, superconductivity down to the lowest temperatures nor conventional Landau Fermi-Liquid behavior. The results imply the magnetic transition temperature in undoped CeRu2_2Si2_2 is very close to absolute 0 K. The possibility for proximity of CeRu2_2Si2_2 to the quantum critical point without any doping is discussed.Comment: 4 pages, 3 figures; accepted for publication in Phys. Rev. B (Rapid Communication) and scheduled issue on 1st of May 200

    Electronic properties of LaAlO3/SrTiO3 n-type interfaces: A GGA+U study

    Full text link
    The role of electronic correlation effects for a realistic description of the electronic properties of LaAlO3/SrTiO3 heterostructures as covered by the on-site Coulomb repulsion within the GGA+U approach is investigated. Performing a systematic variation of the values of the Coulomb parameters applied to the Ti 3d and La 4f orbitals we put previous suggestions to include a large value for the La 4f states into perspective. Furthermore, our calculations provide deeper insight into the band gap landscape in the space spanned by these Coulomb parameters and the resulting complex interference effects. In addition, we identify important correlations between the local Coulomb interaction within the La 4f shell, the band gap, and the atomic displacements at the interface. In particular, these on-site Coulomb interactions influence buckling within the LaO interface layer, which via its strong coupling to the electrostatic potential in the LAO overlayer causes considerable shifts of the electronic states at the surface and eventually controls the band gap.Comment: 14 pages, 9 figure

    On the hyperfine interaction in rare-earth Van Vleck paramagnets at high magnetic fields

    Full text link
    An influence of high magnetic fields on hyperfine interaction in the rare-earth ions with non-magnetic ground state (Van Vleck ions) is theoretically investigated for the case of Tm3+Tm^{3+} ion in axial symmetrical crystal electric field (ethylsulphate crystal). It is shown that magnetic-field induced distortions of 4f4f-electron shell lead to essential changes in hyperfine magnetic field at the nucleus. The proposed theoretical model is in agreement with recent experimental data.Comment: 4 pages, no figures, submitted to J. Phys. : Cond. Mat

    Phenomenological model of relaxor behavior

    Get PDF
    © 2016, Allerton Press, Inc.A phenomenological model is proposed for describing the behavior of ferroelectrics with the diffuse phase transition near the permittivity maximum in the low-temperature phase. The behavior in this temperature range is shown to be related to the dynamics of formation of polarized state regions near defects with localized charges. The delay in the transition to the uniformly polarized state in the low-temperature phase is discussed

    Phenomenological model of relaxor behavior

    Get PDF
    © 2016, Allerton Press, Inc.A phenomenological model is proposed for describing the behavior of ferroelectrics with the diffuse phase transition near the permittivity maximum in the low-temperature phase. The behavior in this temperature range is shown to be related to the dynamics of formation of polarized state regions near defects with localized charges. The delay in the transition to the uniformly polarized state in the low-temperature phase is discussed
    • …
    corecore